This study presents a comparative examination of state-of-the-art resiliency approaches of Convolutional, Spiking, and Photonic neural networks (CNNs, SNNs, PNNs), their fault and error models, and the main fault tolerance techniques.
Resiliency approaches in Convolutional, Photonic, and Spiking Neural Networks
Bosio, Alberto;Pavanello, Fabio;Porsia, Antonio;Ruospo, Annachiara;Sanchez, Ernesto;Vatajelu, Elena Ioana
In corso di stampa
Abstract
This study presents a comparative examination of state-of-the-art resiliency approaches of Convolutional, Spiking, and Photonic neural networks (CNNs, SNNs, PNNs), their fault and error models, and the main fault tolerance techniques.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
LATS24_SpecialSession.pdf
accesso aperto
Descrizione: Accepted version
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
999.1 kB
Formato
Adobe PDF
|
999.1 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2987884