This study presents a comparative examination of state-of-the-art resiliency approaches of Convolutional, Spiking, and Photonic neural networks (CNNs, SNNs, PNNs), their fault and error models, and the main fault tolerance techniques.
Resiliency approaches in Convolutional, Photonic, and Spiking Neural Networks / Bosio, Alberto; Gomes, Mauricio; Pavanello, Fabio; Porsia, Antonio; Ruospo, Annachiara; Sanchez, Ernesto; Vatajelu, Elena Ioana. - ELETTRONICO. - (2024), pp. 1-10. (Intervento presentato al convegno 2024 IEEE 25th Latin American Test Symposium (LATS) tenutosi a Maceió (BRA) nel 09-12 April 2024) [10.1109/LATS62223.2024.10534615].
Resiliency approaches in Convolutional, Photonic, and Spiking Neural Networks
Bosio, Alberto;Pavanello, Fabio;Porsia, Antonio;Ruospo, Annachiara;Sanchez, Ernesto;Vatajelu, Elena Ioana
2024
Abstract
This study presents a comparative examination of state-of-the-art resiliency approaches of Convolutional, Spiking, and Photonic neural networks (CNNs, SNNs, PNNs), their fault and error models, and the main fault tolerance techniques.File | Dimensione | Formato | |
---|---|---|---|
LATS24_SpecialSession.pdf
accesso aperto
Descrizione: Accepted version
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
999.1 kB
Formato
Adobe PDF
|
999.1 kB | Adobe PDF | Visualizza/Apri |
Resiliency_Approaches_in_Convolutional_Photonic_and_Spiking_Neural_Networks.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2987884