The development of Integrated Circuits for the Automotive sector imposes on major challenges. ISO26262 compliance, as part of this process, entails complex analysis for the evaluation of potential random hardware faults. This paper proposes a systematic approach to identify faults that do not disrupt safety-critical functionalities and consequently can be considered Safe. By deploying code coverage and Formal verification techniques, our methodology enables the classification of faults that are unclassified by other technologies, improving ISO26262 compliance. Our results, in combination with Fault Simulation, achieved a Diagnostic Coverage of 93% in a CAN Controller. These figures allow an initial assessment for an ASIL B configuration of the IP.
Determined-Safe Faults Identification: A step towards ISO26262 hardware compliant designs / da Silva, Felipe Augusto; Bagbaba, Ahmet Cagri; Sartoni, Sandro; Cantoro, Riccardo; Reorda, Matteo Sonza; Hamdioui, Said; Sauer, Christian. - ELETTRONICO. - (2020), pp. 1-6. ((Intervento presentato al convegno 2020 IEEE European Test Symposium (ETS) tenutosi a Tallinn, Estonia nel 25-29 May 2020 [10.1109/ETS48528.2020.9131568].
Titolo: | Determined-Safe Faults Identification: A step towards ISO26262 hardware compliant designs | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Abstract: | The development of Integrated Circuits for the Automotive sector imposes on major challenges. ISO...26262 compliance, as part of this process, entails complex analysis for the evaluation of potential random hardware faults. This paper proposes a systematic approach to identify faults that do not disrupt safety-critical functionalities and consequently can be considered Safe. By deploying code coverage and Formal verification techniques, our methodology enables the classification of faults that are unclassified by other technologies, improving ISO26262 compliance. Our results, in combination with Fault Simulation, achieved a Diagnostic Coverage of 93% in a CAN Controller. These figures allow an initial assessment for an ASIL B configuration of the IP. | |
ISBN: | 978-1-7281-4312-5 | |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
PUBLISHED-09131568.pdf | final paper | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
ETS20___Determined_Safe_Faults_Identification.pdf | accepted | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2838375