Nowadays, AI applications are becoming extremely popular in our everyday life as well as for the industry. Recent incidents involving hyperscalers have revealed that even cloudbased datacenter hardware can experience failures leading to Silent Data Corruptions (SDCs), also called Silent Data Errors (SDEs). This Special Session delves into the implications of such failures on AI workloads, both during training and inference, and explores methodologies for efficiently detecting SDCs or SDEs through dedicated monitoring phases.

Special Session: Trustworthy Hardware-AI at the Cloud / Angione, Francesco; Bernardi, Paolo; Bosio, Alberto; Dattatraya Dixit, Harish; Pappalardo, Salvatore; Ruospo, Annachiara; Sanchez, Ernesto; Sinha, Arani; Turco, Vittorio. - ELETTRONICO. - (2025). (Intervento presentato al convegno IEEE VLSI Test Symposium 2025 tenutosi a Tempe, Arizona (USA) nel 28-30 April 2025) [10.1109/VTS65138.2025.11022869].

Special Session: Trustworthy Hardware-AI at the Cloud

Francesco Angione;Paolo Bernardi;Annachiara Ruospo;Ernesto Sanchez;Vittorio Turco
2025

Abstract

Nowadays, AI applications are becoming extremely popular in our everyday life as well as for the industry. Recent incidents involving hyperscalers have revealed that even cloudbased datacenter hardware can experience failures leading to Silent Data Corruptions (SDCs), also called Silent Data Errors (SDEs). This Special Session delves into the implications of such failures on AI workloads, both during training and inference, and explores methodologies for efficiently detecting SDCs or SDEs through dedicated monitoring phases.
2025
979-8-3315-2144-8
File in questo prodotto:
File Dimensione Formato  
VTS25___Special_Session.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 643.21 kB
Formato Adobe PDF
643.21 kB Adobe PDF Visualizza/Apri
Special_Session_Trustworthy_Hardware-AI_at_the_Cloud.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 697.93 kB
Formato Adobe PDF
697.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3000875