This paper aims to comprehensively explore challenges and opportunities to design highly efficient Neural Network (NN) systems through Approximate Computing (AxC) techniques while ensuring fault tolerance properties. By highlighting the intrinsic conflicting goals of AxC and fault tolerance principles, the study aims to stimulate and contribute to a deeper understanding of how important it is to consider fault tolerance requirements while designing approximate-computing-based systems. This is key to developing highly efficient fault-tolerant architectures for Neural Networks.

Approximate Fault-Tolerant Neural Network Systems / Traiola, Marcello; Pappalardo, Salvatore; Piri, Ali; Ruospo, Annachiara; Deveautour, Bastien; Sanchez, Ernesto; Bosio, Alberto; Saeedi, Sepide; Carpegna, Alessio; Göğebakan, Anıl Bayram; Magliano, Enrico; Savino, Alessandro. - ELETTRONICO. - (2024), pp. 1-10. (Intervento presentato al convegno IEEE European Test Symposium (ETS) 2024 tenutosi a Der Haag (NL) nel 20-24 May 2024) [10.1109/ets61313.2024.10567290].

Approximate Fault-Tolerant Neural Network Systems

Ruospo, Annachiara;Sanchez, Ernesto;Saeedi, Sepide;Carpegna, Alessio;Magliano, Enrico;Savino, Alessandro
2024

Abstract

This paper aims to comprehensively explore challenges and opportunities to design highly efficient Neural Network (NN) systems through Approximate Computing (AxC) techniques while ensuring fault tolerance properties. By highlighting the intrinsic conflicting goals of AxC and fault tolerance principles, the study aims to stimulate and contribute to a deeper understanding of how important it is to consider fault tolerance requirements while designing approximate-computing-based systems. This is key to developing highly efficient fault-tolerant architectures for Neural Networks.
2024
979-8-3503-4932-0
File in questo prodotto:
File Dimensione Formato  
Paper___ETS24___Embedded_Tutorial.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 329.47 kB
Formato Adobe PDF
329.47 kB Adobe PDF Visualizza/Apri
Approximate_Fault-Tolerant_Neural_Network_Systems.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2991037