This paper aims to comprehensively explore challenges and opportunities to design highly efficient Neural Network (NN) systems through Approximate Computing (AxC) techniques while ensuring fault tolerance properties. By highlighting the intrinsic conflicting goals of AxC and fault tolerance principles, the study aims to stimulate and contribute to a deeper understanding of how important it is to consider fault tolerance requirements while designing approximate-computing-based systems. This is key to developing highly efficient fault-tolerant architectures for Neural Networks.
Approximate Fault-Tolerant Neural Network Systems / Traiola, Marcello; Pappalardo, Salvatore; Piri, Ali; Ruospo, Annachiara; Deveautour, Bastien; Sanchez, Ernesto; Bosio, Alberto; Saeedi, Sepide; Carpegna, Alessio; Göğebakan, Anıl Bayram; Magliano, Enrico; Savino, Alessandro. - ELETTRONICO. - (2024), pp. 1-10. (Intervento presentato al convegno IEEE European Test Symposium (ETS) 2024 tenutosi a Der Haag (NL) nel 20-24 May 2024) [10.1109/ets61313.2024.10567290].
Approximate Fault-Tolerant Neural Network Systems
Ruospo, Annachiara;Sanchez, Ernesto;Saeedi, Sepide;Carpegna, Alessio;Magliano, Enrico;Savino, Alessandro
2024
Abstract
This paper aims to comprehensively explore challenges and opportunities to design highly efficient Neural Network (NN) systems through Approximate Computing (AxC) techniques while ensuring fault tolerance properties. By highlighting the intrinsic conflicting goals of AxC and fault tolerance principles, the study aims to stimulate and contribute to a deeper understanding of how important it is to consider fault tolerance requirements while designing approximate-computing-based systems. This is key to developing highly efficient fault-tolerant architectures for Neural Networks.File | Dimensione | Formato | |
---|---|---|---|
Paper___ETS24___Embedded_Tutorial.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
329.47 kB
Formato
Adobe PDF
|
329.47 kB | Adobe PDF | Visualizza/Apri |
Approximate_Fault-Tolerant_Neural_Network_Systems.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2991037