
18 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Approximate Fault-Tolerant Neural Network Systems / Traiola, Marcello; Pappalardo, Salvatore; Piri, Ali; Ruospo,
Annachiara; Deveautour, Bastien; Sanchez, Ernesto; Bosio, Alberto; Saeedi, Sepide; Carpegna, Alessio; Göebakan, Anl
Bayram; Magliano, Enrico; Savino, Alessandro. - ELETTRONICO. - (2024), pp. 1-10. (Intervento presentato al convegno
IEEE European Test Symposium (ETS) 2024 tenutosi a Der Haag (NL) nel 20-24 May 2024)
[10.1109/ets61313.2024.10567290].

Original

Approximate Fault-Tolerant Neural Network Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ets61313.2024.10567290

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991037 since: 2024-07-19T12:26:36Z

IEEE

Approximate Fault-Tolerant Neural Network
Systems

Marcello Traiola1, Salvatore Pappalardo2, Ali Piri2, Annachiara Ruospo3, Bastien Deveautour4,
Ernesto Sanchez3, Alberto Bosio2, Sepide Saeedi3, Alessio Carpegna3,

Anıl Bayram Göğebakan3, Enrico Magliano3, Alessandro Savino3
1Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes, France

2,4Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, UMR5270, 69130 Ecully, France
3Politecnico di Torino, Dip. di Automatica e Informatica, Torino, Italy

1marcello.traiola@inria.fr, 2{name.surname}@ec-lyon.fr, 3{name.surname}@polito.it, 4{name.surname}@cpe.fr

Abstract—This paper aims to comprehensively explore chal-
lenges and opportunities to design highly efficient Neural Net-
work (NN) systems through Approximate Computing (AxC)
techniques while ensuring fault tolerance properties. By high-
lighting the intrinsic conflicting goals of AxC and fault tolerance
principles, the study aims to stimulate and contribute to a
deeper understanding of how important it is to consider fault
tolerance requirements while designing approximate-computing-
based systems. This is key to developing highly efficient fault-
tolerant architectures for Neural Networks.

Index Terms—Approximate Computing, Reliability, Neural
Networks, Fault Tolerance, Artificial Intelligence

I. INTRODUCTION

In computing systems, resilience stands as a cornerstone
principle, ensuring continuous operation and robustness in
the face of diverse challenges, including hardware faults.
Traditional approaches to strengthen system resilience often
entail significant overheads regarding resources and energy
consumption. However, a promising alternative has emerged in
Approximate Computing (AxC) that offers an interesting op-
portunity to enhance resilience while mitigating the associated
costs [1].

AxC, characterized by its relaxation of accuracy require-
ments in favor of efficiency gains, presents a novel paradigm
to potentially improve system resilience. By leveraging the
inherent trade-offs between accuracy and resources, AxC
techniques can protect systems against various failure modes,
enabling graceful degradation and adaptive response mecha-
nisms [2]. As highlighted throughout the paper, this might
seem counterintuitive; however, upon a careful design phase,
AxC can help improve both the resilience and efficiency of
Neural Network (NN) systems.

This paper investigates the conflicting requirements of ap-
proximate computing and reliability, highlighting the need for
careful design to improve system resilience and efficiency.
The exploration begins with examining the AxC techniques
applied to NN systems over the years, discussing the impact
of AxC in the NN domain and existing countermeasures to
accuracy degradation. Furthermore, the paper explores the
existing fault-tolerant strategies applied to NN systems. Then,

the journey continues, investigating the delicate balance be-
tween approximation and reliability. We show the existing
approaches to assess the reliability of approximate NN systems
and how AxC has been used to improve NN fault tolerance.
We focus on the techniques to improve the reliability of
the NNs leveraging the accuracy variability and the intrinsic
error masking of approximate techniques, as well as on the
limitations to the reliability when approximate techniques are
a mandatory design constraint. While approximate computing
holds interesting promise for enhancing system resilience,
it also poses challenges and considerations that must be
addressed. Thus, we identify key aspects to consider when
designing approximate fault-tolerant NN systems and highlight
the need for careful Approximation for Reliability (AfR) design
principles to enhance both the resilience and efficiency of such
systems.

The rest of the paper is organized as follows. A background
section discussing the fundamentals of AxC and resiliency
concepts (Section II), an overview of state-of-the-art AxC
techniques in NN systems (Section III), a review of reliability
analysis approaches for NN systems (Section IV). Section
V reviews existing approaches to balance approximation and
reliability to finally highlight challenges, opportunities, and
key aspects to address. Finally, Section VI provides concluding
remarks, including perspectives and open challenges.

II. BACKGROUND

The usage of AxC has been linked for many years with all
applications that inherently possess the resilience to errors,
meaning they can produce satisfactory outputs even when
some of their computations are carried out in an approximate
manner [3]. This is the case for many Machine Learning (ML)
applications, where the classification results can be delivered
with some error tolerance without compromising the task [4].

The concept of AxC encompasses a wide array of tech-
niques that capitalize on the inherent resilience of applications,
ultimately leading to improved efficiency across all computing
stack layers, ranging from the fundamental transistor-level
design to software implementations. These techniques can
have varying impacts on both the hardware and the output

quality. Among them, one of the most common is employing
approximate adders or multipliers [5]–[7] or resorting to data
precision reduction to smaller and approximated representa-
tion, such as fixed point or integer quantization [8].

Error assessment usually involves simulating both the pre-
cise and approximate versions of applications [1] and mea-
suring the deviation with standard metrics, such as Mean
Squared Error (MSE), Mean Absolute Error (MAE) or more
application-dependent ones, such as Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index (SSI). However,
the scientific literature has proposed alternative methods like
Bayesian inference [9] or machine learning-based approaches
[10].

Selecting the most suitable AxC techniques for an applica-
tion is challenging, and many publications have proposed how
to explore the design space to find the most suitable AxC
techniques for an application [11]–[14]. Among various ap-
proaches, such as complex Design Space Exploration (DSE),
including genetic algorithms and simulated annealing [15], ML
ones such as Reinforcement Learning (RL) showed promising
results in improving the DSE [16], [17], minimizing the
number of designs to evaluate while maximizing the quality
of the DSE model and reducing the exploration time [18].

Moving from approximate computing to Fault Injection
(FI) [19], [20] and fault models can be a natural progression
in exploring reliability and resilience in computing systems.
While approximate computing intentionally introduces con-
trolled inaccuracies to improve efficiency, FI techniques delve
into unintended errors and their consequences. By injecting
faults into hardware or software components, researchers
can simulate real-world scenarios where errors occur due to
manufacturing defects, environmental conditions, or malicious
attacks. Fault models provide a systematic framework for
characterizing different types of faults and their effects on
system behavior, ranging from transient faults that cause
temporary errors to permanent faults that result in persistent
failures [21]. By studying fault injection and fault models in
conjunction with approximate computing, researchers can gain
insights into the interplay between intentional approximations
and unintentional errors, leading to the development of more
resilient and robust computing systems capable of withstand-
ing a wide range of adverse conditions.

FI can be classified based on the mechanisms used to
introduce the fault into the system artificially: (i) Physical FI
aims at exposing the final implementation of the system to
an external fault source (e.g., radiation-based fault injections),
while (ii) Hardware-based FI exploits existing hardware inter-
faces to alter the behavior of the system (e.g., using debug
interface to access to Central Processing Unit (CPU) internal
registers), and (iii) Software-based FI instruments the software
layer of the system to inject faults directly into memory
locations. Finally, the (iv) model-based FI instruments the
model of the system (e.g., Hardware Description Language
(HDL) model or by exploiting micro-architectural description
of the CPU/system) to inject faults during model simula-
tion/emulation. Examples and details of the above techniques
can be found in [19], [20].

Every injection could lead to different types of behavior in

the system, classified as follows [22]:
• OK: the system continues working expectedly, with-

out showing any appreciable difference concerning the
golden run after the injection;

• Crash: whenever the system stop its activities. It includes
forced reboots or shutdown of the system.

• Hang: despite being active, the system does not end after
a time window of observation.

• Silent Data Corruption (SDC): despite the system being
able to end its task, the output of the computation is
altered. To check if the computation results are correct,
FI should follow a careful comparison of any system out-
comes with a golden version obtained without injecting
any error.

III. APPROXIMATE COMPUTING FOR NEURAL NETWORK
SYSTEMS

It appears that the use of AxC in ML dates back to 2014,
when inexact multipliers were applied to a NN accelera-
tor [23], achieving savings in energy, delay, and area at the cost
of a moderate accuracy loss for a multi-layer perception. From
there, numerous propositions appeared from the scientific com-
munity at different abstraction levels [24]. Starting with simple
classifiers, scalable-effort classifiers were proposed to dynam-
ically adjust computational effort based on input difficulty
while maintaining accuracy [25]. ApproxANN [26] introduces
an approximate computing framework for Artificial Neural
Networks (ANNs). It applies approximation to computation
and memory accesses by carefully characterizing the impact
of neurons on output quality for maximum energy efficiency
gain under a specified quality constraint.

Concerning Convolutional Neural Networkss (CNNs), the
error resilience of parameters has been investigated [27] to
determine the least critical ones to approximate. As a re-
sult, CNN filters with the least significance can be pruned,
enabling trade-offs between accuracy and efficiency. Another
approach is quantifying the error resilience of each neuron
through theoretical analysis for CNNs [28] and Spiking Neural
Networks (SNNs) [29], revealing significant variability across
neurons. This enables dynamic adaptation of approximate bit-
width and configurable approximate circuits depending on the
error resilience of neurons.

Indeed, the use of approximate multipliers to enhance the
performance of CNNs has been explored [30]–[32], showing
that replacing part of or all exact multipliers with approximate
ones has a low impact on the networks’ accuracy while
achieving significant performance gains in terms of power,
area, and speed. In this sense, ALWANN [33] introduces a
novel approach to select suitable approximate 8-bit multi-
pliers for each computing element of a custom low-power
accelerator by converting fully trained Deep Neural Networks
(DNNs) to operate with 8-bit weights and multipliers. A
multi-objective optimization algorithm is used to minimize
classification error and energy consumption. Also, Neural
Architecture Search (NAS) approaches have been proposed
to incorporate approximate operations into CNNs and achieve
power-efficient hardware implementations, based on Carte-
sian genetic programming [34] and differentiable architecture

search (DARTS) [35]. Approximate multipliers have also been
used to improve the training performance of CNNs [36].

Concerning quantization, studies on developing CNNs with
flexible data types have been conducted [37]. Various data
types for inference and training procedures can be used,
often layer-wise [38], along with incorporating approximate
arithmetic operations into the CNN design. It has been shown
that even 2-bit weights can lead to a reasonable accuracy after
fine-tuning [37] and also Binary Neural Networks (BNNs)
have been extensively studied [39]. Other approaches have
been proposed to compress the storage requirements of NNs
systems without compromising their accuracy. An example
consists of applying pruning to remove unimportant connec-
tions, then the weights are quantized to enforce weight sharing,
and finally, Huffman coding is used to compress the network
representation [40].

Quantization and voltage scaling techniques have been used
to enhance the energy efficiency in resource-constrained de-
vices deploying CNNs [41]. Also, dedicated approximate HW
accelerators have been designed based on conventional [42]
or emerging computing paradigms, such as In-Memory Com-
puting (IMC) and Near-Memory Computing (NMC) [43]
and utilizing reconfigurable nanotechnologies such as Silicon
Nanowire Field Effect Transistors (FETs) [44]. Finally, propo-
sitions to use distributed approximate systems for collaborative
DNN have also been explored [45] to achieve energy-efficient
inference for resource-constrained environments such as edge
computing.

NN-based systems approximation works well thanks to their
inherent tolerance. In fact, at some level, the NN purpose
comes down to approximating a complex and incompletely
specified function [24]. Through the training process, NNs
imitate the behavior of such a function. However, the training
process is usually performed under the fully-accurate computa-
tion assumption. Thus, when too much approximation is intro-
duced, the system accuracy decreases. Therefore, the training
process can be re-purposed to recover from the adverse effects
of approximations.

The backpropagation algorithm has been used for quan-
tifying approximation impact and incremental retraining to
mitigate quality loss [46]. Post-approximation re-training and
approximation-aware (re-)training are often used to recover
from the introduced error [40]. By integrating hardware imper-
fections into the training phase, the accuracy of DNN models
can be recovered significantly even with aggressive approxi-
mation [47]. Methodologies have been proposed for efficiently
selecting approximate multipliers and applying retraining to
minimize the approximation error [48]. Approaches to reduce
the necessary retraining effort have also been used, such as
knowledge distillation and gradient estimation [49]. Also, the
behavioral simulation of various approximate multipliers to
model the error introduced by approximate hardware in DNNs
has been used to accelerate retraining [50].

Frameworks have been developed to simulate the intro-
duction of approximation during training and inference. Ax-
Train [51] is a hardware-oriented training framework that
actively searches for a network parameter distribution with
high error tolerance and passively learns resilient weights by

numerically incorporating the noise distributions of approx-
imate hardware during training. ProxSim [52] and TFAp-
prox [53] are Graphics Processing Unit (GPU)-accelerated
simulation frameworks designed to optimize cross-layer ap-
proximate DNN. Approximate DNN inference and retraining
are supported while introducing a hardware-aware regulariza-
tion technique for DNNs optimization. TorchAxf [54] also
includes SNN and supports different types of approximate
adders and multipliers, as well as standard reduced precision
floating-point formats like bfloat16 and user-customized pre-
cision representations. More recently, the development effort
has been directed towards larger Artificial Intelligence (AI)
models, such as Vision Transformers (ViTs). TransAxx frame-
work [55] enables the use of approximate computing for ViTs.
It uses sensitivity analysis to approximate multiplications,
approximate-aware fine-tuning for accuracy restoration, and
a methodology for generating approximate accelerators using
a Monte Carlo Tree Search algorithm.

For a more complete overview of the existing literature on
Approximate Computing for NNs systems, we refer the reader
to existing surveys [5], [24], [56], [57]

IV. RELIABILITY OF NEURAL NETWORK SYSTEMS

The field of Reliability of NNs systems traces its origins
to 2001 when one of the first studies [58] focused on fault
tolerance in ANNs, particularly multilayered feedforward nets.
The study aims to assess the real influence of faults on neural
computation and evaluate the network’s ability to survive
faults. It adopts a high abstraction level based on neural
graphs and introduces an error model to derive fault-induced
errors’ effects on neural outputs analytically. It also draws
the conditions for complete compensation of errors through
weight adjustment. The experimental evaluation indicated that
even single errors significantly affect computation, and weight
redistribution is insufficient for complete masking post-fault,
thus suggesting architectural redundancy to achieve fault tol-
erance.

A. Reliability Assessment of NN-based Systems

Many studies have analyzed the phenomenon from different
points of view. From the NN model perspective, the robustness
of multi-layer neural networks has been explored on the
hypothesis that neurons fail independently [59], providing
bounds on the number of neurons that can fail without affect-
ing computation. Since the NN system reliability competes
with power efficiency and latency, methods for predicting the
error resilience of neurons have been explored in DNNs [60],
as well as in SNNs [61], for example, based on vulnerability
value ranges [62]. The resilience estimations pave the way to
selective protection for flexible trade-offs between reliability
and efficiency.

From the hardware point of view, the error propagation
in DNN accelerators has been investigated, highlighting that
the resilience depends on factors like data types, values, data
reuses, and layer types [63]. Different HW platforms have
been used to accelerate DNNs. Thus, several studies assess
the impact of permanent and transient faults on such platforms.

A variety of approaches have been proposed, from the most
realistic neutron beam exposure [64]–[68] to combining gate-
level fault simulation accuracy with software fault injection’s
speed and flexibility [69]–[72].

Many tools for resilience evaluation through FI have been
developed throughout the years. SASSIFI [73] was designed
for evaluating, through assembly-language instrumentation,
the resilience of massively parallel applications running on
modern NVIDIA GPUs to soft errors caused by high-energy
particle strikes. A fault injection environment built on the
darknet DNN framework has also been proposed [74] for
evaluating the impact of permanent faults on CNNs used in
automotive applications. High-level fault injection frameworks
for both TensorFlow-based applications (TensorFI [75] and In-
jecTF2 [76]) and Pytorch-based applications (PyTorchFI [77]
and TorchFI [78]) were proposed. They enable the injection
of hardware and software faults into TensorFlow programs,
allowing assessment of their resilience across various fault
types. Fiji-FIN [79] was designed for evaluating the resiliency
of IoT devices executing ML and Deep Learning (DL) models,
mainly for security challenges like bit perturbation attacks
and soft errors. Ways to provide a fast and accurate solution
for injecting software-level faults in DNNs were embedded
in approaches such as BinFI [80], Enpheeph [81], and SCI-
FI [82]. While BinFI models the error propagation charac-
teristics of a machine learning application as a monotonic
function, the SCI-FI approach focuses on running the faulty
DNN selectively by rapidly determining whether fault effects
should be propagated throughout the inference. Enpheeph
was designed specifically for fast injections on SNNs and
compressed (sparse) DNNs. As mentioned, cross-layer fault-
injection approaches [71] have been proposed to speed up the
evaluation. Error models derived from accurate fault injection
campaigns are used within error simulation engines, enabling
fast and accurate assessments.

It is then clear that FI is a standard method for assessing
the reliability of integrated systems. Due to the complexity
of modern systems, only a subset of potential errors is ran-
domly selected for practical experiments. A well-established
method [83] provides an analytical way to obtain the necessary
number of faults to inject to achieve a desired confidence level
and error interval. Specific research for the particular case of
NN systems has been conducted [4], providing a methodology
to compute the statistically significant number of faults to be
injected and the fault injection points to achieve statistically
significant results.

B. Reliability Improvement of Neural Network systems
Over the years, many approaches have been proposed to

improve the reliability of NN systems. Traditional resilience
methods like Triple Modular Redundancy (TMR) incur high
overheads and are unsuitable for DNN algorithms or accel-
erator architectures. Thus, the sensitivity to faults of different
model and accelerator parts is assessed to enable cost-effective
selective protection.

Many approaches target pre-trained networks, as the dataset
to apply (re-)training-based approaches is not always avail-
able, and the cost is often prohibitive, especially for huge

models. Specific methods aim to reduce worst-case failure
rates after a bit-flip fault by employing online approaches
based on selective TMR to counteract the effect of faults [84],
[85]. Others modify the parameters of the NN to include
Error Correction Codes (ECCs) [86]–[89], or use ML-based
approaches to identify critical parameters and apply selective
ECC-based memory protection [90], [91].

Approaches at the scheduling level have also been proposed
to distribute the computation of critical neurons among the
available processing elements and reduce the likelihood that
a physical fault may impact multiple critical neurons [92].
Ensemble learning has also been used to enhance robust-
ness against memory errors in embedded systems [93] while
maintaining memory requirements. Approaches using security
primitives to improve the reliability of NNs also exist [94].

When training data is available, and (re-)training is feasible,
further enhancements are possible. Indeed, leveraging the
training procedure enables the embedding of fault tolerance
within the model. Some studies apply weight distribution
fine-tuning [95] after carefully estimating neuron resilience.
Fault-Aware Training (FAT) technique [96], [97] relies on
injecting faults during the NN training to make it learn the
possible faulty scenarios. Other approaches integrate ECC into
the NN parameters during training [98], so the correcting
code becomes part of the parameters. These approaches aim
to improve the model fault tolerance without impacting the
memory footprint.

For a more complete overview of the existing literature
on the Reliability of NNs, we refer the reader to existing
surveys [99]–[104].

V. BALANCING APPROXIMATION AND RELIABILITY IN NN
SYSTEMS: CHALLENGES AND OPPORTUNITIES

Reliability and AxC are tightly related, as both rely on the
NN inherent resiliency to errors. However, they are conflicting,
as the goal of AxC to reduce the system redundancy - hence
the overhead - goes against the inherent requirement for
redundancy in reliability. Therefore, these two aspects should
be jointly considered when designing NN systems to produce
highly optimized and reliable solutions. In this section, we
show - to the best of our knowledge - the existing literature
studies in this direction.

A. State of the art on reliability assessment of approximate
NN systems

First, let us consider studies about reliability assessment
of approximate NN systems. Quantization is one of the most
used AxC approaches to improve efficiency. Thus, the impact
of using mixed-precision Floating-Point Operation (FLOP)
on the reliability of DNNs executing on modern computing
architectures - including Xilinx FPGAs, Intel Xeon Phis, and
NVIDIA GPUs - has been explored. Results show that, while
the number of wrong outputs in CNN execution tends to in-
crease [105], the performance-reliability trade-off significantly
improves when using lower precision data [106], as the Mean
Executions Between Failures (MEBF) increase. Moreover,

fixed-point data representation offers the best trade-off be-
tween memory footprint reduction and CNN resilience [107].

Studies have been carried out on the impact of faults in
approximate deep neural network accelerators, utilizing state-
of-the-art approximate operations [6]. Faults can exacerbate
accuracy loss in approximate accelerators compared to ac-
curate DNN accelerators [108]. However, in some cases,
approximate operations can help improve resilience [109].
We show such a phenomenon in the case study reported in
Section V-C. On the one hand, this confirms once again that
AxC and Reliability have conflicting goals. On the other hand,
it shows that they are not necessarily incompatible, and careful
and tailored approaches can help improve both fault resilience
and efficiency [110]–[112].

Also, tools for exploring approximation and reliability trade-
offs in DNN accelerators are starting to be proposed. As
an example, DeepAxe [113] focuses on FPGA-based imple-
mentations. It enables selective approximation and provides
different trade-offs in the design space considering accuracy,
reliability, and hardware performance. Moreover, functional
approximation and AxC errors have been used to emulate the
effect of faults and speed up the resilience assessment [114],
[115].

On the side of SNN, recent works are investigating both
the impact of AxC as a tool for minimizing the power
consumption and area footprint, as well as assessing the
reliability fall out of such instruction. Authors in [116] propose
a systematic way of exploring precision reduction on all the
memory parameters of SNNs, resorting to Interval Arithmetic
(IA) modeling of the error. Once the precision reduction
is introduced in the system, it works as [117], investigates
the fault-tolerance of the overall inference of the networks
in terms of accuracy. Authors proposed an extension of the
fault injection tool presented in [82] to target SNNs, and
the main takeout of their analysis confirms that the bigger
layers of the network, where the generation of spikes works
in collaboration among neurons are still very resistant to faults.
On the contrary, the fault tolerance reduces drastically when
reaching the final layers, with only a few neurons partitioning
the output space.

B. State of the art on reliability improvement of approximate
NN systems

As supply voltage scaling has been used for energy-efficient
DNN accelerator design, a sensitivity-based error resilience
technique has been proposed in [118] to schedule more sensi-
tive computations to more robust logic units. The in-memory
architecture presented in [119] is based on Bit-line Computing
and incorporates effective error detection and mitigation to
enable aggressive voltage scaling while maintaining high CNN
accuracy. The study in [120] jointly considers error resilience,
efficiency, and performance optimization by using an evo-
lutionary, multi-objective Neural Architecture Search (NAS)
optimization technique for automatically designing hardware-
optimized DNN architectures. To enable rapid evaluation of
DNN architectures, the study derives computationally inex-
pensive objective functions to predict error resilience, energy

consumption, latency, and required bandwidth of DNNs on
hardware. AdAM [121], a novel adaptive fault-tolerant approx-
imate multiplier for ASIC-based SNN accelerators, employs
neutron beam exposure and fault injection adaptive adder
utilizing the leading one position value of inputs for fault
detection, optimizing unutilized adder resources. A lightweight
fault mitigation technique sets detected faulty bits to zero.
[122] propose a fault mitigation method to counter permanent
faults on approximate DNN accelerators described in [108].
They propose a Fault-aware weight re-tuning, which updates
weights to minimize the absolute difference between approxi-
mate and accurate multiplications of overall activations in the
presence of faults.

While the studies mentioned so far investigate the reliabil-
ity improvement of approximated NN systems, other studies
explore the concept of approximate fault-tolerance for CNN
accelerators to reduce performance overheads while ensuring
reliability. The study in [123] investigates selective duplication
and imprecise checking, demonstrating considerable reliability
improvements with limited overhead. Finally, runtime adap-
tation of quantization has been used to achieve lightweight
fault tolerance. Even in the presence of faults, a fail-degraded
operating mode is proposed in [124], leveraging reduced
precision computations to preserve compute capability rather
than losing it entirely.

C. Case Study

Conventional fault-tolerant approaches leverage redundancy
or reconfiguration to tolerate the presence of HW faults.
Even if the overhead of those techniques is reduced thanks
to the use of AxC, it can still be too high. In [109], the
authors introduced the idea of only using the AxC paradigm to
increase the resilience of DNN without any other redundancy
techniques and thus avoiding extra costs. We extended the
proposed idea by analyzing bit-width reduction and functional
approximation.

Let us first define the adopted DNN hardware accelerator.
It is based on an output stationary systolic array. Figure 1a
shows the general architecture. The weights flow “vertically”
while the activations flow “horizontally”. Figure 1b shows
a functional diagram of a Processing Element (PE). A PE
performs a Multiply-accumulate Operation (MAC) operation;
this means that for each clock cycle:

• north and west inputs are multiplied together,
• the result is added to the partial sum register,
• the value of north is put on the south output,
• the value of west is put in the east output.
These operations accumulate a series of multiplications and

forward data to the neighbors. In this implementation, weights
flow from north to south, and the activations from west to east
are accumulated in the PE.

The systolic array has been implemented with two data
representations: the INT 16-bit as the reference (i.e., precise)
and the INT 8-bit as the approximated precision. Concerning
the functional approximation technique, we conducted several
experiments leveraging on different publicly available approx-
imate multipliers from the EvoApproxLite [6].

TABLE I: Summary of Experimental Results.

Bit-width Multiplier Energy Reduction [%] Accuracy [%] Injected Faults [%] Masked [%] Tolerable [%] Critical [%]
Baseline 16 Precise – 99.07% 10% 47.58% 29,18% 23.24%

1 8 Precise 50% 99.05% 19% 64.65% 23.01% 12.34%
2 8 mul12s 2PT 50.3% 99.08% 19% 63.9% 23.79% 12.3%
3 8 mul12s 2QH 51.21% 99.1% 19% 38.92% 44.85% 16.23%
4 8 mul12s 2R5 52% 99.06% 19% 26.96% 55.69% 17.34%
5 8 mul12s 34P 55% 98.24% 19% 74.16% 23.01% 2.83%
6 8 mul12s 2TE 55.6% 9.8% 19% 3.94% 27.5% 68.76%

(a) Custom systolic array

(b) Single PE internals

Fig. 1: Systolic array architecture

1) Resilience Analysis: The resilience analysis is based on
the framework published in [67]. We injected transient faults
(i.e., modeled as single bit-flip) affecting the inputs of PEs in
the systolic array. The faults’ universe is then 3-dimensional,
and its size depends on both the array size and the bit-width:

FaultSpace = 2×K ×M (1)

where M is the number of systolic array’s PE, and K is
the bit-width of the PE (i.e., 8- or 16-bit). Please note that we
injected faults in the PE input corresponding to the weights of
the DNN. Each fault corresponds to an alteration of one bit,
forcing its value to either ‘1’ or ‘0’.

A statistical FI was configured by assuming a 1% margin
of error, 50% probability of a fault failing, a cut-off point of
2.58 which corresponds to 99% confidence level [4].

Two outputs are collected for each input: the fault-free Ŷ
and the faulty output Ỹ . They are vectors of 10 components,
each corresponding to the probability of a class. The clas-
sification labels ŷ and ỹ are obtained as ŷ = argmax(Ŷ)
and ỹ = argmax(Ỹ). For the purpose of the resilience
classification, Ŷ and Ỹ are compared for each pair input-fault
as follows:

• we classify a fault as Masked when Ŷ = Ỹ ,

• Tolerable when
– ŷ = ỹ and max(Ỹ)

max(Ŷ)
> 1,

– ŷ = ỹ and 0.95 < max(Ỹ)

max(Ŷ)
< 1,

• Critical when
– ŷ = ỹ and max(Ỹ)

max(Ŷ)
< 0.95,

– ŷ ̸= ỹ.
In other words, we check whether the top-1 probability of the
injected network max(Ỹ) is greater or smaller than the golden
top-1 probability max(Ŷ) and classify the fault accordingly.

Note that masked faults do not produce any difference in the
output, while only critical faults involve misclassification.

2) Results: The LeNet-5 CNN architecture, trained and
tested on the MNIST dataset, has been used to validate the
technique’s effectiveness. It is composed of three convolutional
layers and four fully connected. The training process was
performed using the accurate version of the network (i.e., with-
out quantization and functional approximation). The training
parameters are: learning rate started at 0.05, with the decay
of 5 × 10−4 every 375(*128) iterations, and the momentum
was set to 0.9. The final accuracy of the model was equal
to 99.05%. We then performed 16- and 8-bit post-training
quantization through the following steps.

1) all weights are rescaled in the range [−1.0, 1.0], and
activations at each layer are rescaled in the range
[−1.0, 1.0] for signed outputs and [0.0, 1.0] for unsigned
outputs;

2) inputs, weights, biases and activations are quantized to
the desired nbits by converting [−1.0, 1.0] and [0.0, 1.0]
to [−2nbits−1 − 1,2nbits−1 − 1] and [0, 2nbits−1 − 1]

The target CNN is then deployed in our systolic array,
sized as 28 × 28 in the configurations depicted in Table I.
The Table reports the different systolic array configurations
(numbered from 1 to 6 in the first column). Each configuration
is characterized by its bit-width precision (16/8 bits) and the
type of approximate multiplier (second and third columns).
Columns four and five report the performance regarding energy
reduction w.r.t the baseline and the classification accuracy. The
last columns show the results of the FI campaign expressed in
terms of fault percentage of injected faults w.r.t. the total one
[4], and the FI outcomes (i.e., rate of Masked, Tolerable and
Critical faults) found in every fault injection campaign.

As expected, the approximation positively impacts the en-
ergy reduction at a minimal accuracy degradation except for
the configuration #6, for which the multiplier has very low pre-
cision. The interesting observation is the impact on resilience,
represented here as injection outcomes of the approximation.
Firstly, bit-width reduction reduces by a factor of 2 the
amount of critical faults. Second, the approximate multiplier
significantly impacts resilience, and the impact depends on
the adopted multiplier. We can cite the case #5 for which
we reduced 8x the number of critical faults without adding
redundancy mechanisms.

D. Discussion

Throughout the paper, we highlighted that Reliability and
AxC are conflicting but not necessarily incompatible. Careful

design approaches must be adopted for fault-resilient and
efficient NN systems. We identified the following key aspects
to be considered when designing NN systems to produce
highly optimized and reliable solutions.

1) Low-precision data: quantization typically worsens the
effect of a fault impacting the CNN execution, but the
performance gains increase the Mean Executions Be-
tween Failures. A fault- and quantization-aware training
process seems a promising direction to achieve resilient
and efficient NN systems.

2) Fault-tolerant approximate operators: functional ap-
proximation has demonstrated very good results in
achieving energy efficiency but often impacts fault toler-
ance negatively. Carefully adding fault tolerance features
to approximate operators might allow them to be used
consistently in safety-critical contexts.

3) Lightweight fault tolerance approaches: in some con-
texts, it might be enough to allow a controlled error
until the system’s normal operation can be restored.
Lightweight monitors and mitigators can hence help in
this direction.

4) Models and tools: integrated design solutions for approx-
imate yet resilient NN systems for safety-critical appli-
cations are needed, paving the way to Approximation for
Reliability design principles. To cope with the increasing
complexity of systems, models, and tools to predict and
control the impact of the approximation on efficiency
and reliability should be designed to be embedded in
new approximation-based design flows.

VI. CONCLUSION

This paper has explored the foundational aspects of the
relationship between AxC and resiliency within NN systems,
presenting a comprehensive overview of current techniques
and methodologies. Through our analysis of state-of-the-art
approaches, we have highlighted the overlapping aspects of re-
liability and AxC techniques, highlighting potential synergies
and challenges. Addressing these challenges and exploring
further opportunities for integration will be vital for enhancing
the robustness and resilience of neural networks and coming to
Approximation for Reliability design principles. Practical use
cases presented in the paper demonstrate the inner resiliency
of AxC techniques that, when tolerable by the application,
can enhance the fault tolerance, helping the designer apply
fault tolerance techniques only in critical parts of the systems,
reducing the overall costs. We identified some key aspects to
consider while designing NN systems for generating highly
optimized and reliable solutions.

This paper serves as a foundation for future research in this
critical domain, offering perspectives on future directions and
highlighting open challenges to investigate further.

ACKNOWLEDGMENTS

This work has been supported by the National Resilience
and Recovery Plan (PNRR) through the National Center for
HPC, Big Data and Quantum Computing, and from the APRO-
POS project in the European Union’s Horizon 2020 research

and innovation programme under the Marie Skłodowska-
Curie grant agreement No 956090. This research was partially
funded by the ANR-21-CE24-0015 “RE-TRUSTING” project
and by the ANR France 2030 AdaptING project, “ANR-23-
PEIA-0009”

REFERENCES

[1] A. Bosio et al., “Design, verification, test and in-field implications
of approximate computing systems,” in 2020 IEEE European Test
Symposium (ETS), 2020, pp. 1–10.

[2] A. Savino et al., “Approximate computing design exploration through
data lifetime metrics,” in 2019 IEEE European Test Symposium (ETS),
2019, pp. 1–7.

[3] V. K. Chippa et al., “Analysis and characterization of inherent
application resilience for approximate computing,” in 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), 2013, pp.
1–9.

[4] A. Ruospo et al., “Assessing convolutional neural networks reliability
through statistical fault injections,” in 2023 Design, Automation Test in
Europe Conference Exhibition (DATE), 2023, pp. 1–6.

[5] H. Jiang et al., “Approximate arithmetic circuits: A survey, character-
ization, and recent applications,” Proceedings of the IEEE, vol. 108,
no. 12, pp. 2108–2135, 2020.

[6] V. Mrazek et al., “Evoapprox8b: Library of approximate adders and
multipliers for circuit design and benchmarking of approximation
methods,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, 2017, pp. 258–261.

[7] A. Piri et al., “Input-Aware Approximate Computing,” in 2022
IEEE International Conference on Automation, Quality and Testing,
Robotics (AQTR), May 2022, pp. 1–6. [Online]. Available: https:
//ieeexplore.ieee.org/document/9801944

[8] M. Traiola et al., “Predicting the impact of functional approximation:
from component- to application-level,” in 2018 IEEE 24th International
Symposium on On-Line Testing And Robust System Design (IOLTS),
2018, pp. 61–64.

[9] A. Savino et al., “Efficient neural network approximation via bayesian
reasoning,” in 2021 24th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS), 2021, pp. 45–
50.

[10] V. Mrazek et al., “autoax: An automatic design space exploration
and circuit building methodology utilizing libraries of approximate
components,” in Proceedings of the 56th Annual Design Automation
Conference 2019, ser. DAC ’19. New York, NY, USA: Association
for Computing Machinery, 2019. [Online]. Available: https://doi.org/
10.1145/3316781.3317781

[11] W. Hu et al., “Exploring the design space of approximate arithmetic
circuits using reinforcement learning,” in 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
442–447.

[12] S. Barone et al., “Multi-Objective Application-Driven Approximate
Design Method,” IEEE Access, vol. 9, pp. 86 975–86 993, 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/9449861

[13] M. Barbareschi et al., “A Genetic-algorithm-based Approach to the
Design of DCT Hardware Accelerators,” ACM Journal on Emerging
Technologies in Computing Systems, vol. 18, no. 3, pp. 1–25, Jul.
2022. [Online]. Available: https://dl.acm.org/doi/10.1145/3501772

[14] M. Barbareschi et al., “Automatic Approximation of Computer
Systems Through Multi-objective Optimization,” in Design and
Applications of Emerging Computer Systems, W. Liu et al., Eds.
Cham: Springer Nature Switzerland, 2024, pp. 383–420. [Online].
Available: https://doi.org/10.1007/978-3-031-42478-6 15

[15] M. Rizakis et al., “Approximate fpga-based lstms under computation
time constraints,” in Applied Reconfigurable Computing. Architectures,
Tools, and Applications, N. Voros et al., Eds. Cham: Springer
International Publishing, 2018, pp. 3–15.

[16] Y. Wu et al., “Ironman: Reinforcement learning based design space
exploration for approximate computing,” in 2021 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). IEEE, 2021,
pp. 1–8.

[17] S. Saeedi et al., “Design space exploration of approximate computing
techniques with a reinforcement learning approach,” in 2023 53rd
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W), 2023, pp. 167–170.

[18] Q. Gautier et al., “Sherlock: A multi-objective design space exploration
framework,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 27, no. 4, pp. 1–20, 2022.

[19] G. Di Natale et al., Eds., Cross-layer reliability of computing
systems. Place of publication not identified: INST OF ENGIN
AND TECH, 2020, oCLC: 1191709900. [Online]. Available: http:
//public.eblib.com/choice/PublicFullRecord.aspx?p=6341977

[20] P. Bodmann et al., “Soft error effects on arm microprocessors: Early
estimations vs. chip measurements,” IEEE Transactions on Computers,
pp. 1–1, 2021.

[21] M. Bushnell et al., Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits. Springer Publishing Company,
Incorporated, 2013.

[22] A. Vallero et al., “Cross-layer system reliability assessment framework
for hardware faults,” in 2016 IEEE International Test Conference (ITC),
Nov 2016, pp. 1–10.

[23] Z. Du et al., “Leveraging the error resilience of machine-learning
applications for designing highly energy efficient accelerators,” in 2014
19th Asia and South Pacific Design Automation Conference (ASP-
DAC), pp. 201–206.

[24] J. Henkel et al., “Approximate computing and the efficient machine
learning expedition,” in 2022 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 2022, pp. 1–9.

[25] S. Venkataramani et al., “Scalable-effort classifiers for energy-efficient
machine learning,” in Proceedings of the 52nd Annual Design
Automation Conference, ser. DAC ’15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2744769.2744904

[26] Q. Zhang et al., “Approxann: An approximate computing framework
for artificial neural network,” in 2015 Design, Automation & Test in
Europe Conference & Exhibition (DATE), Mar, pp. 701–706.

[27] M. Hanif et al., “Error resilience analysis for systematically employing
approximate computing in convolutional neural networks,” in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE),
Mar, pp. 913–916.

[28] C. Wu et al., “ynamic adaptation of approximate bit-width for cnns
based on quantitative error resilience,” in 2019 IEEE/ACM Interna-
tional Symposium on Nanoscale Architectures (NANOARCH), pp. 1–6.

[29] S. Sen et al., “Approximate computing for spiking neural networks,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, 2017, pp. 193–198.

[30] I. Hammad et al., “Impact of approximate multipliers on vgg deep
learning network,” IEEE Access, vol. 6, pp. 60 438–60 444,.

[31] M. Ansari et al., “Improving the accuracy and hardware efficiency
of neural networks using approximate multipliers,” IEEE Trans. Very
Large Scale Integr. VLSI Syst, vol. 28, no. 2, pp. 317–328,.

[32] O. Spantidi et al., “How much is too much error? analyzing the
impact of approximate multipliers on dnns,” in 2022 23rd International
Symposium on Quality Electronic Design (ISQED), 2022, pp. 1–6.

[33] V. Mrazek et al., “Alwann: Automatic layer-wise approximation of deep
neural network accelerators without retraining,” in 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov,
pp. 1–8.

[34] M. Pinos et al., “Evolutionary approximation and neural architecture
search,” Genetic Programming and Evolvable Machines, vol. 23,
no. 3, p. 351–374, sep 2022. [Online]. Available: https://doi.org/10.
1007/s10710-022-09441-z

[35] M. Pinos et al., “Approxdarts: Differentiable neural architecture search
with approximate multipliers,” 2024.

[36] I. Hammad et al., “Deep learning training with simulated approximate
multipliers,” in 2019 IEEE International Conference on Robotics and
Biomimetics (ROBIO), Dec, pp. 47–51.

[37] P. Rek et al., “Typecnn: Cnn development framework with flexible data
types,” in 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Mar, pp. 292–295.

[38] C. Parra et al., “Exploiting resiliency for kernel-wise cnn approxima-
tion enabled by adaptive hardware design,” in 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5.

[39] C. Yuan et al., “A comprehensive review of Binary Neural Network,”
Artificial Intelligence Review, vol. 56, no. 11, pp. 12 949–13 013, Nov.
2023. [Online]. Available: http://arxiv.org/abs/2110.06804

[40] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding.”

[41] B. Denkinger, “Impact of memory voltage scaling on accuracy and
resilience of deep learning based edge devices,” IEEE Des. Test, vol. 37,
no. 2, pp. 84–92,.

[42] F. Kreß, “Atlas: An approximate time-series lstm accelerator for low-
power iot applications,” in 2023 26th Euromicro Conference on Digital
System Design (DSD), pp. 569–576.

[43] F. Ponzina et al., “Overflow-free compute memories for edge ai
acceleration,” ACM Trans. Embed. Comput. Syst, vol. 22, no. 5s, pp.
1–121 23,.

[44] R. Saravanan et al., “Reconfigurable fet approximate computing-based
accelerator for deep learning applications,” in 2023 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5.

[45] A. Das et al., “Towards energy-efficient collaborative inference using
multi-system approximations,” IEEE Internet Things J, pp. 1–1,.

[46] S. Venkataramani et al., “AxNN: energy-efficient neuromorphic
systems using approximate computing,” in Proceedings of the
2014 international symposium on Low power electronics and
design, ser. ISLPED ’14. New York, NY, USA: Association for
Computing Machinery, Aug. 2014, pp. 27–32. [Online]. Available:
https://dl.acm.org/doi/10.1145/2627369.2627613

[47] Y. Fan et al., “Axdnn: towards the cross-layer design of approximate
dnns,” in Proceedings of the 24th Asia and South Pacific Design
Automation Conference, in ASPDAC ’19. New York, NY, USA:
Association for Computing Machinery, pp. 317–322.

[48] C. Parra et al., “Full approximation of deep neural networks through
efficient optimization,” in 2020 IEEE International Symposium on
Circuits and Systems (ISCAS, pp. 1–5.

[49] C. Parra et al., “Knowledge distillation and gradient estimation for
active error compensation in approximate neural networks,” in 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 679–684.

[50] C. Parra et al., “Efficient accuracy recovery in approximate neural
networks by systematic error modelling,” in 2021 26th Asia and South
Pacific Design Automation Conference (ASP-DAC), pp. 365–371.
[Online]. Available: https://ieeexplore.ieee.org/document/9371529

[51] X. He et al., “Joint design of training and hardware towards efficient
and accuracy-scalable neural network inference,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 4,
pp. 810–821, 2018.

[52] C. Parra et al., “Proxsim: Gpu-based simulation framework for cross-
layer approximate dnn optimization,” in 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE), Mar, pp. 1193–1198.

[53] F. Vaverka et al., “Tfapprox: Towards a fast emulation of dnn approx-
imate hardware accelerators on gpu,” in 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2020, pp. 294–297.

[54] M. Kwak et al., “Torchaxf: Enabling rapid simulation of approximate
dnn models using gpu-based floating-point computing framework,”
in 2023 31st International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
pp. 1–8.

[55] D. Danopoulos et al., “Transaxx: Efficient transformers with approxi-
mate computing.”

[56] G. Zervakis et al., “Approximate computing for ml: State-of-the-art,
challenges and visions,” in 2021 26th Asia and South Pacific Design
Automation Conference (ASP-DAC), 2021, pp. 189–196.

[57] G. Armeniakos et al., “Hardware approximate techniques for deep
neural network accelerators: A survey,” ACM Comput. Surv., vol. 55,
no. 4, nov 2022. [Online]. Available: https://doi.org/10.1145/3527156

[58] V. Piuri, “Analysis of Fault Tolerance in Artificial Neural Networks,”
Journal of Parallel and Distributed Computing, vol. 61, no. 1, pp. 18–
48, Jan. 2001.

[59] E. Mhamdi et al., “When neurons fail,” in 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 1028–
1037.

[60] C. Schorn et al., “Accurate neuron resilience prediction for a flexible
reliability management in neural network accelerators,” in 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Mar,
pp. 979–984.

[61] T. Spyrou et al., “Neuron fault tolerance in spiking neural networks,”
in 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2021, pp. 743–748.

[62] M. Ahmadilivani et al., “Deepvigor: Vulnerability value ranges and
factors for dnns’ reliability assessment,” in 2023 IEEE European Test
Symposium (ETS), pp. 1–6.

[63] G. Li, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, in SC ’17, vol. 8. New York, NY, USA:
ACM, pp. 1–8 12.

[64] F. F. d. Santos et al., “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2019.

[65] F. F. Dos Santos et al., “Experimental evaluation of neutron-induced
errors on a multicore risc-v platform,” in 2022 IEEE 28th International
Symposium on On-Line Testing and Robust System Design (IOLTS),
2022, pp. 1–7.

[66] R. L. Rech et al., “Reliability of google’s tensor processing units for
embedded applications,” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2022, pp. 376–381.

[67] S. Pappalardo et al., “A fault injection framework for ai hardware
accelerators,” in 2023 IEEE 24th Latin American Test Symposium
(LATS), 2023, pp. 1–6.

[68] M. Traiola et al., “Impact of high-level-synthesis on reliability of
artificial neural network hardware accelerators,” IEEE Transactions on
Nuclear Science, pp. 1–1, 2024.

[69] J. Condia et al., “A multi-level approach to evaluate the impact of gpu
permanent faults on cnn’s reliability,” in 2022 IEEE International Test
Conference (ITC), pp. 278–287.

[70] F. F. Dos Santos et al., “Understanding and improving gpus’ reliability
combining beam experiments with fault simulation,” in 2023 IEEE
International Test Conference (ITC), 2023, pp. 176–185.

[71] C. Bolchini et al., “Fast and Accurate Error Simulation for CNNs
Against Soft Errors,” IEEE Transactions on Computers, vol. 72, no. 4,
pp. 984–997, Apr. 2023.

[72] L. Roquet et al., “Cross-Layer Reliability Evaluation and Efficient
Hardening of Large Vision Transformers Models,” in Design
Automation Conference (DAC), San Fracisco, United States, Jun.
2024. [Online]. Available: https://hal.science/hal-04456702

[73] S. K. S. Hari et al., “Sassifi: An architecture-level fault injection tool for
gpu application resilience evaluation,” in 2017 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS),
2017, pp. 249–258.

[74] A. Bosio et al., “A reliability analysis of a deep neural network,” in
2019 IEEE Latin American Test Symposium (LATS), Mar, pp. 1–6.

[75] Z. Chen et al., “Tensorfi: A flexible fault injection framework for
tensorflow applications,” in 2020 IEEE 31st International Symposium
on Software Reliability Engineering (ISSRE), 2020, pp. 426–435.

[76] M. Beyer et al., “Fault injectors for tensorflow: Evaluation of the impact
of random hardware faults on deep cnns,” 2020.

[77] A. Mahmoud et al., “Pytorchfi: A runtime perturbation tool for dnns,”
in 2020 50th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks Workshops (DSN-W), 2020, pp. 25–31.

[78] B. Goldstein et al., “Reliability evaluation of compressed deep learning
models,” in 2020 IEEE 11th Latin American Symposium on Circuits
Systems (LASCAS), 2020.

[79] N. Khoshavi et al., “Fiji-fin: A fault injection framework on quantized
neural network inference accelerator,” in 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA), Dec, pp.
1139–1144.

[80] Z. Chen et al., “Binfi: an efficient fault injector for safety-critical
machine learning systems,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’19. New York, NY, USA: Association for
Computing Machinery, 2019. [Online]. Available: https://doi.org/10.
1145/3295500.3356177

[81] A. Colucci et al., “enpheeph: A fault injection framework for spiking
and compressed deep neural networks,” in 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2022, pp.
5155–5162.

[82] G. Gavarini et al., “Sci-fi: a smart, accurate and unintrusive fault-
injector for deep neural networks,” in 2023 IEEE European Test
Symposium (ETS). Venezia, Italy: IEEE, pp. 1–6.

[83] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in 2009 Design, Automation & Test in Europe Conference
& Exhibition, 2009, pp. 502–506.

[84] N. Khoshavi et al., “Shieldenn: Online accelerated framework for fault-
tolerant deep neural network architectures,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), pp. 1–6.

[85] A. Ruospo et al., “Selective hardening of critical neurons in deep
neural networks,” in 2022 25th International Symposium on Design
and Diagnostics of Electronic Circuits and Systems (DDECS), 2022,
pp. 136–141.

[86] M. Qin et al., “Robustness of neural networks against storage media
errors,” 2017.

[87] H. Guan et al., In-place zero-space memory protection for CNN. Red
Hook, NY, USA: Curran Associates Inc., 2019.

[88] S. Burel et al., “Zero-overhead protection for cnn weights,” in 2021
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), 2021, pp. 1–6.

[89] S.-S. Lee et al., “Value-aware parity insertion ecc for fault-tolerant
deep neural network,” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2022, pp. 724–729.

[90] M. Traiola et al., “A machine-learning-guided framework for fault-
tolerant dnns,” in 2023 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2023, pp. 1–2.

[91] M. Traiola et al., “hardnning: a machine-learning-based framework
for fault tolerance assessment and protection of dnns,” in 2023 IEEE
European Test Symposium (ETS), pp. 1–6.

[92] A. Ruospo et al., “On the reliability assessment of artificial neural
networks running on ai-oriented mpsocs,” Appl. Sci, vol. 11, no. 14,
Art. no. 14.

[93] F. Ponzina et al., “E2cnns: Ensembles of convolutional neural networks
to improve robustness against memory errors in edge-computing de-
vices,” IEEE Trans. Comput, vol. 70, no. 8, pp. 1199–1212,.

[94] N. I. Deligiannis et al., “Towards the integration of reliability and se-
curity mechanisms to enhance the fault resilience of neural networks,”
IEEE Access, vol. 9, pp. 155 998–156 012, 2021.

[95] C. Schorn et al., “An efficient bit-flip resilience optimization method
for deep neural networks,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), Mar, pp. 1507–1512.

[96] J. J. Zhang et al., “Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator,” in 2018
IEEE 36th VLSI Test Symposium (VTS), 2018, pp. 1–6.

[97] U. Zahid et al., “Fat: Training neural networks for reliable inference
under hardware faults,” in 2020 IEEE International Test Conference
(ITC), 2020, pp. 1–10.

[98] S. T. Ahmed et al., “Nn-ecc: Embedding error correction codes in
neural network weight memories using multi-task learning,” in 2024
IEEE 42nd VLSI Test Symposium (VTS), IEEE, Apr.

[99] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” J. Syst. Archit, vol. 104, pp. 101 689,.

[100] A. Ruospo et al., “A survey on deep learning resilience assessment
methodologies,” Computer, vol. 56, no. 2, pp. 57–66,.

[101] F. Su et al., “Testability and dependability of ai hardware: Survey,
trends, challenges, and perspectives,” IEEE Des. Test, pp. 1–1,.

[102] C. Bolchini et al., “Resilience of Deep Learning applications: a
systematic survey of analysis and hardening techniques,” Sep. 2023,
arXiv:2309.16733 [cs]. [Online]. Available: http://arxiv.org/abs/2309.
16733

[103] H.-G. Stratigopoulos et al., “Testing and reliability of spiking neural
networks: A review of the state-of-the-art,” in 2023 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2023, pp. 1–8.

[104] P. Rech, “Artificial neural networks for space and safety-critical appli-
cations: Reliability issues and potential solutions,” IEEE Transactions
on Nuclear Science, pp. 1–1, 2024.

[105] L. Luza, “Investigating the impact of radiation-induced soft errors
on the reliability of approximate computing systems,” in 2020 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), pp. 1–6.

[106] F. Fernandes dos Santos et al., “Reliability evaluation of mixed-
precision architectures,” in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2019, pp. 238–249.

[107] A. Ruospo et al., “Investigating data representation for efficient and
reliable Convolutional Neural Networks,” Microprocessors and Mi-
crosystems, vol. 86, p. 104318, Oct. 2021.

[108] A. Siddique et al., “Exploring Fault-Energy Trade-offs in Approximate
DNN Hardware Accelerators,” in 2021 22nd International Symposium
on Quality Electronic Design (ISQED), Apr. 2021, pp. 343–348.

[109] S. Pappalardo et al., “Investigating the effect of approximate multipliers
on the resilience of a systolic array dnn accelerator,” in 2023 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2023, pp. 1–6.

[110] G. Rodrigues et al., “Survey on approximate computing and its
intrinsic fault tolerance,” Electronics, vol. 9, no. 4, 2020. [Online].
Available: https://www.mdpi.com/2079-9292/9/4/557

[111] B. Deveautour et al., “Qamr: an approximation-based fully reliable tmr
alternative for area overhead reduction,” in 2020 IEEE European Test
Symposium (ETS), 2020, pp. 1–6.

[112] M. Traiola et al., “Design space exploration of approximation-based
quadruple modular redundancy circuits,” in 2021 IEEE/ACM Interna-
tional Conference On Computer Aided Design (ICCAD), 2021, pp. 1–9.

[113] M. Taheri, “Deepaxe: A framework for exploration of approximation
and reliability trade-offs in dnn accelerators,” in 2023 24th Interna-
tional Symposium on Quality Electronic Design (ISQED), Apr, pp. 1–
8.

[114] M. Taheri et al., “Appraiser: Dnn fault resilience analysis employing
approximation errors,” in 2023 26th International Symposium on De-
sign and Diagnostics of Electronic Circuits and Systems (DDECS), pp.
124–127.

[115] M. H. Ahmadilivani et al., “Special session: Approximation and fault
resiliency of dnn accelerators,” in 2023 IEEE 41st VLSI Test Symposium
(VTS), 2023, pp. 1–10.

[116] S. Saeedi et al., “Prediction of the impact of approximate computing
on spiking neural networks via interval arithmetic,” in 2022 IEEE 23rd
Latin American Test Symposium (LATS), 2022, pp. 1–6.

[117] A. B. Gogebakan et al., “Spikingjet: Enhancing fault injection for fully
and convolutional spiking neural networks,” 2024.

[118] W. Choi et al., “Sensitivity based error resilient techniques for
energy efficient deep neural network accelerators,” in 2019 56th
ACM/IEEE Design Automation Conference (DAC), Jun, pp. 1–6.
[Online]. Available: https://ieeexplore.ieee.org/document/8806833

[119] M. Rios et al., “Error resilient in-memory computing architecture
for cnn inference on the edge,” in Proceedings of the Great Lakes
Symposium on VLSI 2022, in GLSVLSI ’22. New York, NY, USA:
Association for Computing Machinery, pp. 249–254.

[120] C. Schorn et al., “Automated design of error-resilient and hardware-
efficient deep neural networks,” Neural Computing and Applications,
vol. 32, no. 24, pp. 18 327–18 345, Dec. 2020.

[121] M. Taheri et al., “AdAM: Adaptive Fault-Tolerant Approximate Mul-
tiplier for Edge DNN Accelerators,” in 2024 IEEE European Test
Symposium (ETS). IEEE, May 2024.

[122] A. Siddique et al., “Exposing reliability degradation and mitigation in
approximate dnns under permanent faults,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 31, no. 4, pp. 555–566,
2023.

[123] W. Wei et al., “An Approximate Fault-Tolerance Design for a Convo-
lutional Neural Network Accelerator,” IT Professional, vol. 25, no. 4,
pp. 85–90, Jul. 2023, conference Name: IT Professional.

[124] M. Beyer et al., “Online Quantization Adaptation for Fault-Tolerant
Neural Network Inference,” in Computer Safety, Reliability, and
Security: 42nd International Conference, SAFECOMP 2023, Toulouse,
France, September 20–22, 2023, Proceedings. Berlin, Heidelberg:
Springer-Verlag, Sep. 2023, pp. 243–256. [Online]. Available:
https://doi.org/10.1007/978-3-031-40923-3 18

