Segmentation-based autonomous navigation has recently been proposed as a promising methodology to guide robotic platforms through crop rows without requiring precise GPS localization. However, existing methods are limited to scenarios where the centre of the row can be identified thanks to the sharp distinction between the plants and the sky. However, GPS signal obstruction mainly occurs in the case of tall, dense vegetation, such as high tree rows and orchards. In this work, we extend the segmentation-based robotic guidance to those scenarios where canopies and branches occlude the sky and hinder the usage of GPS and previous methods, increasing the overall robustness and adaptability of the control algorithm. Extensive experimentation on several realistic simulated tree fields and vineyards demonstrates the competitive advantages of the proposed solution.
Autonomous Navigation in Rows of Trees and High Crops with Deep Semantic Segmentation / Navone, Alessandro; Martini, Mauro; Ostuni, Andrea; Angarano, Simone; Chiaberge, Marcello. - ELETTRONICO. - (2023), pp. 1-6. (Intervento presentato al convegno 2023 European Conference on Mobile Robots (ECMR) tenutosi a Coimbra, Portugal nel 04-07 September 2023) [10.1109/ECMR59166.2023.10256334].
Autonomous Navigation in Rows of Trees and High Crops with Deep Semantic Segmentation
Navone, Alessandro;Martini, Mauro;Ostuni, Andrea;Angarano, Simone;Chiaberge, Marcello
2023
Abstract
Segmentation-based autonomous navigation has recently been proposed as a promising methodology to guide robotic platforms through crop rows without requiring precise GPS localization. However, existing methods are limited to scenarios where the centre of the row can be identified thanks to the sharp distinction between the plants and the sky. However, GPS signal obstruction mainly occurs in the case of tall, dense vegetation, such as high tree rows and orchards. In this work, we extend the segmentation-based robotic guidance to those scenarios where canopies and branches occlude the sky and hinder the usage of GPS and previous methods, increasing the overall robustness and adaptability of the control algorithm. Extensive experimentation on several realistic simulated tree fields and vineyards demonstrates the competitive advantages of the proposed solution.File | Dimensione | Formato | |
---|---|---|---|
Autonomous_Navigation_in_Rows_of_Trees_and_High_Crops_with_Deep_Semantic_Segmentation.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.51 MB
Formato
Adobe PDF
|
2.51 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Tree_Rows_Segmentation_Guidance___ECMR_2023.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2982610