The study of postural control system is relevant by academic and clinical points of view, and it can be improved by considering model-based approaches. In this framework, to improve the understanding of the underlying mechanism of balance control, it is often necessary to apply external perturbations to the body of a patient. This work deals with the parametric identification of postural control models by fitting with experimental data collected with a custom-made automated perturbation device. The results of model optimization are discussed and provide a preliminary validation of the methodology.

Parametric Identification of Postural Control Models in Humans Challenged by Impulse-Controlled Perturbations / DE BENEDICTIS, Carlo; Paterna, Maria; Berettoni, Andrea; Ferraresi, Carlo. - ELETTRONICO. - 133:(2023), pp. 228-237. (Intervento presentato al convegno MESROB 2023 tenutosi a Craiova (Romania) nel 7-10 giugno 2023) [10.1007/978-3-031-32446-8_25].

Parametric Identification of Postural Control Models in Humans Challenged by Impulse-Controlled Perturbations

Carlo De Benedictis;Maria Paterna;Andrea Berettoni;Carlo Ferraresi
2023

Abstract

The study of postural control system is relevant by academic and clinical points of view, and it can be improved by considering model-based approaches. In this framework, to improve the understanding of the underlying mechanism of balance control, it is often necessary to apply external perturbations to the body of a patient. This work deals with the parametric identification of postural control models by fitting with experimental data collected with a custom-made automated perturbation device. The results of model optimization are discussed and provide a preliminary validation of the methodology.
2023
978-3-031-32445-1
978-3-031-32446-8
File in questo prodotto:
File Dimensione Formato  
MESROB2023-postural-modeling_revision.pdf

accesso aperto

Descrizione: Author post-print
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 506.51 kB
Formato Adobe PDF
506.51 kB Adobe PDF Visualizza/Apri
mesrob23-parametric_identification_final.pdf

accesso riservato

Descrizione: Publisher post-print
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2978940