Given the increasing importance of the neurosymbolic (NeSy) approach in artificial intelligence, there is a growing interest in studying benchmarks specifically designed to emphasize the ability of AI systems to combine low-level representation learning with high-level symbolic reasoning. One such recent benchmark is Visual Sudoku Puzzle Classification, that combines visual perception with relational constraints. In this work, we investigate the application of Logic Tensork Networks (LTNs) to the Visual Sudoku Classification task and discuss various alternatives in terms of logical constraint formulation, integration with the perceptual module and training procedure.
Designing Logic Tensor Networks for Visual Sudoku puzzle classification / Morra, Lia; Azzari, Alberto; Bergamasco, Letizia; Braga, Marco; Capogrosso, Luigi; Delrio, Federico; DI GIACOMO, Giuseppe; Eiraudo, Simone; Ghione, Giorgia; Giudice, Rocco; Koudounas, Alkis; Piano, Luca; REGE CAMBRIN, Daniele; Risso, Matteo; Rondina, Marco; Russo, ALESSANDRO SEBASTIAN; Russo, Marco; Taioli, Francesco; Vaiani, Lorenzo; Vercellino, Chiara. - ELETTRONICO. - 3432:(2023), pp. 223-232. (Intervento presentato al convegno 17th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2023) tenutosi a Certosa di Pontignano, Siena (Italia) nel July 3-5, 2023).
Designing Logic Tensor Networks for Visual Sudoku puzzle classification
Lia Morra;Alberto Azzari;Letizia Bergamasco;Marco Braga;Luigi Capogrosso;Federico Delrio;Giuseppe Di Giacomo;Simone Eiraudo;Giorgia Ghione;Rocco Giudice;Alkis Koudounas;Luca Piano;Daniele Rege Cambrin;Matteo Risso;Marco Rondina;Alessandro Russo;Marco Russo;Francesco Taioli;Lorenzo Vaiani;Chiara Vercellino
2023
Abstract
Given the increasing importance of the neurosymbolic (NeSy) approach in artificial intelligence, there is a growing interest in studying benchmarks specifically designed to emphasize the ability of AI systems to combine low-level representation learning with high-level symbolic reasoning. One such recent benchmark is Visual Sudoku Puzzle Classification, that combines visual perception with relational constraints. In this work, we investigate the application of Logic Tensork Networks (LTNs) to the Visual Sudoku Classification task and discuss various alternatives in terms of logical constraint formulation, integration with the perceptual module and training procedure.File | Dimensione | Formato | |
---|---|---|---|
NeSy_workshop_Visual_Sudoku.pdf
accesso aperto
Descrizione: camera ready
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
180.96 kB
Formato
Adobe PDF
|
180.96 kB | Adobe PDF | Visualizza/Apri |
paper19.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
255.28 kB
Formato
Adobe PDF
|
255.28 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2978475