Given the increasing importance of the neurosymbolic (NeSy) approach in artificial intelligence, there is a growing interest in studying benchmarks specifically designed to emphasize the ability of AI systems to combine low-level representation learning with high-level symbolic reasoning. One such recent benchmark is Visual Sudoku Puzzle Classification, that combines visual perception with relational constraints. In this work, we investigate the application of Logic Tensork Networks (LTNs) to the Visual Sudoku Classification task and discuss various alternatives in terms of logical constraint formulation, integration with the perceptual module and training procedure.

Designing Logic Tensor Networks for Visual Sudoku puzzle classification / Morra, Lia; Azzari, Alberto; Bergamasco, Letizia; Braga, Marco; Capogrosso, Luigi; Delrio, Federico; DI GIACOMO, Giuseppe; Eiraudo, Simone; Ghione, Giorgia; Giudice, Rocco; Koudounas, Alkis; Piano, Luca; REGE CAMBRIN, Daniele; Risso, Matteo; Rondina, Marco; Russo, ALESSANDRO SEBASTIAN; Russo, Marco; Taioli, Francesco; Vaiani, Lorenzo; Vercellino, Chiara. - ELETTRONICO. - 3432:(2023), pp. 223-232. (Intervento presentato al convegno 17th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2023) tenutosi a Certosa di Pontignano, Siena (Italia) nel July 3-5, 2023).

Designing Logic Tensor Networks for Visual Sudoku puzzle classification

Lia Morra;Alberto Azzari;Letizia Bergamasco;Marco Braga;Luigi Capogrosso;Federico Delrio;Giuseppe Di Giacomo;Simone Eiraudo;Giorgia Ghione;Rocco Giudice;Alkis Koudounas;Luca Piano;Daniele Rege Cambrin;Matteo Risso;Marco Rondina;Alessandro Russo;Marco Russo;Francesco Taioli;Lorenzo Vaiani;Chiara Vercellino
2023

Abstract

Given the increasing importance of the neurosymbolic (NeSy) approach in artificial intelligence, there is a growing interest in studying benchmarks specifically designed to emphasize the ability of AI systems to combine low-level representation learning with high-level symbolic reasoning. One such recent benchmark is Visual Sudoku Puzzle Classification, that combines visual perception with relational constraints. In this work, we investigate the application of Logic Tensork Networks (LTNs) to the Visual Sudoku Classification task and discuss various alternatives in terms of logical constraint formulation, integration with the perceptual module and training procedure.
2023
File in questo prodotto:
File Dimensione Formato  
NeSy_workshop_Visual_Sudoku.pdf

accesso aperto

Descrizione: camera ready
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 180.96 kB
Formato Adobe PDF
180.96 kB Adobe PDF Visualizza/Apri
paper19.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 255.28 kB
Formato Adobe PDF
255.28 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2978475