In the context of Industry 4.0, a paradigm shift from traditional industrial manipulators to Collaborative Robots (CRs) is ongoing, with the latter serving ever more closely humans as auxiliary tools in many production processes. In this scenario, continuous technological advancements offer new opportunities for further innovating robotics and other areas of next-generation industry. For example, 6G could play a prominent role due to its human-centric view of the industrial domains. In particular, its expected dependability features will pave the way for new applications exploiting highly effective Digital Twin (DT)- and eXtended Reality (XR)-based telepresence. In this work, a novel application for the above technologies allowing two distant users to collaborate in the programming of a CR is proposed. The approach encompasses demanding data flows (e.g., point cloud-based streaming of collaborating users and robotic environment), with network latency and bandwidth constraints. Results obtained by analyzing this approach from the viewpoint of network requirements in a setup designed to emulate 6G connectivity indicate that the expected performance of forthcoming mobile networks will make it fully feasible in principle.
Digital twin- and extended reality-based telepresence for collaborative robot programming in the 6G perspective / Calandra, Davide; Pratticò, Filippo Gabriele; Cannavo', Alberto; Casetti, Ettore; Lamberti, Fabrizio. - In: DIGITAL COMMUNICATIONS AND NETWORKS. - ISSN 2352-8648. - (In corso di stampa).
Digital twin- and extended reality-based telepresence for collaborative robot programming in the 6G perspective
Calandra, Davide;Pratticò, Filippo Gabriele;Cannavo', Alberto;Casetti Ettore;Lamberti Fabrizio
In corso di stampa
Abstract
In the context of Industry 4.0, a paradigm shift from traditional industrial manipulators to Collaborative Robots (CRs) is ongoing, with the latter serving ever more closely humans as auxiliary tools in many production processes. In this scenario, continuous technological advancements offer new opportunities for further innovating robotics and other areas of next-generation industry. For example, 6G could play a prominent role due to its human-centric view of the industrial domains. In particular, its expected dependability features will pave the way for new applications exploiting highly effective Digital Twin (DT)- and eXtended Reality (XR)-based telepresence. In this work, a novel application for the above technologies allowing two distant users to collaborate in the programming of a CR is proposed. The approach encompasses demanding data flows (e.g., point cloud-based streaming of collaborating users and robotic environment), with network latency and bandwidth constraints. Results obtained by analyzing this approach from the viewpoint of network requirements in a setup designed to emulate 6G connectivity indicate that the expected performance of forthcoming mobile networks will make it fully feasible in principle.File | Dimensione | Formato | |
---|---|---|---|
paper_final.pdf
non disponibili
Descrizione: Pre-print / Author's accepted version
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
5.06 MB
Formato
Adobe PDF
|
5.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972199