In the context of Industry 4.0, a paradigm shift from traditional industrial manipulators to Collaborative Robots (CRs) is ongoing, with the latter serving ever more closely humans as auxiliary tools in many production processes. In this scenario, continuous technological advancements offer new opportunities for further innovating robotics and other areas of next-generation industry. For example, 6G could play a prominent role due to its human-centric view of the industrial domains. In particular, its expected dependability features will pave the way for new applications exploiting highly effective Digital Twin (DT)- and eXtended Reality (XR)-based telepresence. In this work, a novel application for the above technologies allowing two distant users to collaborate in the programming of a CR is proposed. The approach encompasses demanding data flows (e.g., point cloud-based streaming of collaborating users and robotic environment), with network latency and bandwidth constraints. Results obtained by analyzing this approach from the viewpoint of network requirements in a setup designed to emulate 6G connectivity indicate that the expected performance of forthcoming mobile networks will make it fully feasible in principle.
Digital twin- and extended reality-based telepresence for collaborative robot programming in the 6G perspective / Calandra, Davide; Pratticò, Filippo Gabriele; Cannavo', Alberto; Casetti, CLAUDIO ETTORE; Lamberti, Fabrizio. - In: DIGITAL COMMUNICATIONS AND NETWORKS. - ISSN 2352-8648. - 10:2(2024), pp. 315-327. [10.1016/j.dcan.2022.10.007]
Digital twin- and extended reality-based telepresence for collaborative robot programming in the 6G perspective
Calandra, Davide;Pratticò, Filippo Gabriele;Cannavo', Alberto;Casetti Ettore;Lamberti Fabrizio
2024
Abstract
In the context of Industry 4.0, a paradigm shift from traditional industrial manipulators to Collaborative Robots (CRs) is ongoing, with the latter serving ever more closely humans as auxiliary tools in many production processes. In this scenario, continuous technological advancements offer new opportunities for further innovating robotics and other areas of next-generation industry. For example, 6G could play a prominent role due to its human-centric view of the industrial domains. In particular, its expected dependability features will pave the way for new applications exploiting highly effective Digital Twin (DT)- and eXtended Reality (XR)-based telepresence. In this work, a novel application for the above technologies allowing two distant users to collaborate in the programming of a CR is proposed. The approach encompasses demanding data flows (e.g., point cloud-based streaming of collaborating users and robotic environment), with network latency and bandwidth constraints. Results obtained by analyzing this approach from the viewpoint of network requirements in a setup designed to emulate 6G connectivity indicate that the expected performance of forthcoming mobile networks will make it fully feasible in principle.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972199