This work assesses the reliability of a hyperspectral image classifier for edge devices under transient faults by using a fine-grain strategy based on the Hardware Injection Through Program Transformation (HITPT) technique. The results identified the most vulnerable software parts and the corruption effects due to hardware faults (from 5.1% to 100.0% of accuracy drop). Then, the results supported the adoption of a selective-hardening software mechanism (based on the Duplication with Comparison strategy) to effectively mitigate the most critical effects under limited costs.
Analysis and Mitigation of Soft-errors in GPU-accelerated Hyperspectral Image Classifiers / Abed, Sergiu-Mohamed; Guerrero-Balaguera, Juan-David; Condia, Josie E. Rodriguez; De Lucia, Gianluca; Lapegna, Marco; Reorda, Matteo Sonza. - ELETTRONICO. - (2025), pp. 131-134. (Intervento presentato al convegno 28th International Symposium on Design and Diagnostics of Electronic Circuits and Systems, DDECS 2025 tenutosi a Lyon (FRA) nel 05-07 May 2025) [10.1109/ddecs63720.2025.11006812].
Analysis and Mitigation of Soft-errors in GPU-accelerated Hyperspectral Image Classifiers
Abed, Sergiu-Mohamed;Guerrero-Balaguera, Juan-David;Reorda, Matteo Sonza
2025
Abstract
This work assesses the reliability of a hyperspectral image classifier for edge devices under transient faults by using a fine-grain strategy based on the Hardware Injection Through Program Transformation (HITPT) technique. The results identified the most vulnerable software parts and the corruption effects due to hardware faults (from 5.1% to 100.0% of accuracy drop). Then, the results supported the adoption of a selective-hardening software mechanism (based on the Duplication with Comparison strategy) to effectively mitigate the most critical effects under limited costs.File | Dimensione | Formato | |
---|---|---|---|
Analysis_and_Mitigation_of_Soft-errors_in_GPU-accelerated_Hyperspectral_Image_Classifiers.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
_DDECS_25__Analysis_and_Mitigation_of_Soft_errors_in_GPU_accelerated_Hyperspectral_Image_Classifiers___4_pages_free.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
254.7 kB
Formato
Adobe PDF
|
254.7 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3002302