The distributed embedded systems paradigm is a promising platform for high-performance embedded applications. We present a distributed algorithm and system based on cost-effective devices. The proof of concept shows how a parallelized approach leveraging a distributed embedded platform can address the computational of the Machine Learning K-Nearest Neighbors (K-NN) algorithm with large and heterogeneous datasets.
Scalable K-Nearest Neighbors Implementation using Distributed Embedded Systems / DE SIO, Corrado; Avignone, Andrea; Sterpone, Luca; Chiusano, Silvia. - (2024), pp. 314-315. (Intervento presentato al convegno CF' 24: 21st ACM International Conference on Computing Frontiers tenutosi a Ischia (ITA) nel May 7-9, 2024) [10.1145/3649153.3652994].
Scalable K-Nearest Neighbors Implementation using Distributed Embedded Systems
Corrado De Sio;Andrea Avignone;Luca Sterpone;Silvia Chiusano
2024
Abstract
The distributed embedded systems paradigm is a promising platform for high-performance embedded applications. We present a distributed algorithm and system based on cost-effective devices. The proof of concept shows how a parallelized approach leveraging a distributed embedded platform can address the computational of the Machine Learning K-Nearest Neighbors (K-NN) algorithm with large and heterogeneous datasets.File | Dimensione | Formato | |
---|---|---|---|
cf24-final_knn.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
296.06 kB
Formato
Adobe PDF
|
296.06 kB | Adobe PDF | Visualizza/Apri |
3649153.3652994.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
314.07 kB
Formato
Adobe PDF
|
314.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2988853