
26 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Scalable K-Nearest Neighbors Implementation using Distributed Embedded Systems / DE SIO, Corrado; Avignone,
Andrea; Sterpone, Luca; Chiusano, Silvia. - (2024), pp. 314-315. (Intervento presentato al convegno CF' 24: 21st ACM
International Conference on Computing Frontiers tenutosi a Ischia (ITA) nel May 7-9, 2024) [10.1145/3649153.3652994].

Original

Scalable K-Nearest Neighbors Implementation using Distributed Embedded Systems

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3649153.3652994

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2988853 since: 2024-05-19T21:25:04Z

ACM

POSTER: Scalable K-Nearest Neighbors Implementation using
Distributed Embedded Systems

ABSTRACT

The distributed embedded systems paradigm is a promising

platform for high-performance embedded applications. We

present a distributed algorithm and system based on cost-

effective devices. The proof of concept shows how a

parallelized approach leveraging a distributed embedded

platform can address the computational of the Machine

Learning K-Nearest Neighbors (K-NN) algorithm with large

and heterogeneous datasets.

CCS CONCEPTS

•Computer systems organization~Embedded and cyber-

physical systems~Embedded systems~Embedded software

KEYWORDS

Distributed Systems, Embedded Systems, K-NN, Machine

Learning, SoC

ACM Reference format:

Corrado De Sio, Andrea Avignone, Luca Sterpone and Silvia Chiusano.

2018. Scalable K-Nearest Neighbors Implementation using

Distributed Embedded Systems. In Proceedings of 21st ACM

International Conference on Computing Frontiers (CF’24). May 7-9,

2024, Ischia, Italy. https://doi.org/10.1145/3649153.3652994

1 Introduction

In recent years, embedded systems have been established

as versatile solutions for many application fields. The advent

of Systems-on-Chip (SoC) paved the way for embedded

platforms with good performance and high connectivity at a

reduced cost. As a result, they soon attracted interest as a

platform for Machine Learning (ML) algorithms. ML tasks

often rely on dedicated hardware accelerators to enhance

overall efficiency. Parallel computation has emerged as a valid

strategy to overcome performance bottlenecks. The

distributed embedded systems paradigm, where multiple

SoCs collaborate, is a promising platform for scalable and

highly efficient computation [1][2]. The advantages of

distributed systems characterize such hardware architecture.

K-Nearest Neighbors (K-NN) is a fundamental lazy

supervised machine learning algorithm for classification and

regression tasks [3]. The central idea behind K-NN is to

predict the class or value of a new data point based on the K

nearest points of the training dataset to the new data point. K-

NN’s computational demand significantly increases with large

datasets, thus triggering the need for optimized and

distributed solutions [4].

This paper presents a distributed architecture and

approach for speeding up a K-NN classifier. We show proof of

how leveraging a cluster of cost-effective embedded devices

makes it possible to address the computational challenges in

the context of the K-NN algorithm.

2 Platform and Methodology

The approach relies on a distributed algorithm running on

an embedded cluster system. Fig. 1 shows the general pipeline

for distributing the K-NN algorithm. It consists of dynamically

splitting the training dataset across the nodes currently

available in the system. As a result, each node identifies the set

of local neighbors, by computing the distances between the

test data and each sample in its local portion of training data.

Once the computation is complete, the nodes return their K

candidates to be aggregated. Thus, the global nearest K points

are detected, and the final classification is performed

according to the majority class of the neighbors.

The proposed architecture involves different actors: (i) a

catalog to manage the partitioning of the dataset among nodes,

the registration of nodes, and the final aggregation of results

for classification; (ii) N computational nodes to carry out the

computation on the assigned dataset portion; (iii) web sockets,

for handling the communication between nodes and catalog.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
Owner/Author.
CF '24, May 7–9, 2024, Ischia, Italy
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0597-7/24/05.
https://doi.org/10.1145/3649153.3652994

Corrado De Sio, Andrea Avignone, Luca Sterpone, Silvia Chiusano
 Department of Control and Computer Engineering (DAUIN)

Politecnico di Torino, Turin, Italy

corrado.desio@polito.it, andrea.avignone@polito.it, luca.sterpone@polito.it, silvia.chiusano@polito.it

Fig. 1: Conceptual architecture of distributed K-NN.

CF ‘24, 7 – 9 May, 2024, Ischia, Italy

The registration of nodes is plug-and-play. The system

dynamically adapts and instruments the nodes accordingly

with the nodes currently available in the system.

The hardware architecture is based on Zynq UltraScale+

MPSoC devices [5]. We used an heterogeneous cluster,

including an XCK26 on a KV260 board as a catalog node. On

the same node, a computation node instance runs as well,

representing the first node of the system that is always

present. Additional computation nodes are implemented using

Ultra96v2 boards that embed a ZU3EG. KV260 has 4 Gb DDR,

while Ultra96v2 is equipped with 2 Gb LPDDR. Ultra96v2 uses

a IEEE 802.11 b/g/n WiFi interconnection, while KV260 uses

1GbE. A router is used as the single access point for the

network. All the platforms use an OS based on Ubuntu 22.04.

Fig. 2 shows an example of the system with three nodes.

3 Experimental Results

Two different datasets have been used as case studies.

(i) MNIST dataset [6], providing a set of grayscale images of

handwritten digits with ten classes (i.e., numbers from 0 to 9).

The training set consists of 60,000 images. (ii) Covertype

dataset [7], focusing on the classification of forest cover type

according to cartographic data (e.g., elevation, slope). The

training set consists of 464,809 samples.

They both achieve good classification results with standard K-

NN (accuracy > 90%), but they are prone to longer

computation times due to their size and heterogeneity.

Fig. 3 reports the obtained results in terms of Wall-Clock

time varying N for an inference of 10 samples with our

distributed architecture (K=5). For reference, we included the

wall clock time using a traditional implementation based on

Python Scikit-Learn. For completeness, we also included the

performance of our system when relying on a single node.

Using a single node, we have a degradation of performance

since the overhead introduced by the architecture negatively

impacts the computational time. Instead, relying on the

distributed architecture (N>1), we observe a progressive

performance improvement, up to 57% for MNIST and 70% for

the Covertype dataset with N=4. Clearly, our solution does not

influence the classification accuracy which is preserved.

4 Conclusions and Future Works

We introduced a promising architecture and methodology

to exploit embedded distributed clusters based on cost-

effective devices to significantly reduce the time required for

K-NN classification by distributing the overall effort. In the

future, we want to explore how to increase further

performance of different ML models by relying on

programmable hardware available on the SoCs, combining the

high flexibility provided by the software approach with

performance that can be provided by custom hardware.

ACKNOWLEDGMENTS

This study was partially carried out within the FAIR - Future

Artificial Intelligence Research - and received funding from

the European Union Next-GenerationEU (PNRR MISSIONE 4

COMPONENTE 2, INVESTIMENTO 1.3 D.D. 1555 11/10/2022,

PE00000013) and partially supported by the

SmartData@PoliTO center on Big Data and Data Science. This

paper reflects only the authors’ views and opinions, neither

the European Union nor the European Commission can be

considered responsible for them.

REFERENCES
[1] L. Bozzoli et al., "EuFRATE: European FPGA Radiation-hardened

Architecture for Telecommunications," 2023 Design, Automation & Test in
Europe Conference & Exhibition (DATE), Antwerp, Belgium, 2023, pp. 1-6,
doi: 10.23919/DATE56975.2023.10137035.

[2] O. Knodel, A. Georgi, P. Lehmann, W. E. Nagel and R. G. Spallek, "Integration
of a Highly Scalable, Multi-FPGA-Based Hardware Accelerator in Common
Cluster Infrastructures," 2013 42nd International Conference on Parallel
Processing, Lyon, France, 2013, pp. 893-900, doi: 10.1109/ICPP.2013.106.

[3] T. Cover and P. Hart, "Nearest neighbor pattern classification," in IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21-27, January
1967, doi: 10.1109/TIT.1967.1053964.

[4] W. Zhang, X. Chen, Y. Liu, and Q. Xi, "A Distributed Storage and Computation
k-Nearest Neighbor Algorithm Based Cloud-Edge Computing for Cyber-
Physical-Social Systems," in IEEE Access, vol. 8, pp. 50118-50130, 2020,
doi: 10.1109/ACCESS.2020.2974764.

[5] AMD. Zynq UltraScale+ Device Technical Reference Manual, UG1085, v2.4,
December 2023.

[6] Deng, L. (2012). The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Magazine, 29(6), 141–
142.

[7] Blackard,Jock. (1998). Covertype. UCI Machine Learning Repository.
https://doi.org/10.24432/C50K5N.

Fig. 3: Measured Wall-Clock time with a different number of
computational nodes for 5-NN. The sequential Scikit-Learn solution

is showed as a reference.

0.87

0.53 0.42 0.37

2.78

1.36 1.29

0.83

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4

W
al

l-C
lo

ck
 Ti

m
e

[s
]

Computational Nodes [#]

MNIST
COVERTYPE

COVERTYPE Sequential (Scikit-Learn) [2.03 s]

MNIST Sequential (Scikit-Learn) [0.66 s]

Fig. 2: Embedded Distributed Platform with three nodes.

