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POSTER: Scalable K-Nearest Neighbors Implementation using 
Distributed Embedded Systems

ABSTRACT 

The distributed embedded systems paradigm is a promising 

platform for high-performance embedded applications. We 

present a distributed algorithm and system based on cost-

effective devices. The proof of concept shows how a 

parallelized approach leveraging a distributed embedded 

platform can address the computational of the Machine 

Learning K-Nearest Neighbors (K-NN) algorithm with large 

and heterogeneous datasets.  
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1 Introduction 

In recent years, embedded systems have been established 

as versatile solutions for many application fields. The advent 

of Systems-on-Chip (SoC) paved the way for embedded 

platforms with good performance and high connectivity at a 

reduced cost. As a result, they soon attracted interest as a 

platform for Machine Learning (ML) algorithms. ML tasks 

often rely on dedicated hardware accelerators to enhance 

overall efficiency. Parallel computation has emerged as a valid 

strategy to overcome performance bottlenecks. The 

distributed embedded systems paradigm, where multiple 

SoCs collaborate, is a promising platform for scalable and 

highly efficient computation [1][2]. The advantages of 

distributed systems characterize such hardware architecture.  

K-Nearest Neighbors (K-NN) is a fundamental lazy 

supervised machine learning algorithm for classification and 

regression tasks [3]. The central idea behind K-NN is to 

predict the class or value of a new data point based on the K 

nearest points of the training dataset to the new data point. K-

NN’s computational demand significantly increases with large 

datasets, thus triggering the need for optimized and 

distributed solutions [4].  

This paper presents a distributed architecture and 

approach for speeding up a K-NN classifier. We show proof of 

how leveraging a cluster of cost-effective embedded devices 

makes it possible to address the computational challenges in 

the context of the K-NN algorithm. 

2 Platform and Methodology  

The approach relies on a distributed algorithm running on 

an embedded cluster system. Fig. 1 shows the general pipeline 

for distributing the K-NN algorithm. It consists of dynamically 

splitting the training dataset across the nodes currently 

available in the system. As a result, each node identifies the set 

of local neighbors, by computing the distances between the 

test data and each sample in its local portion of training data. 

Once the computation is complete, the nodes return their K 

candidates to be aggregated. Thus, the global nearest K points 

are detected, and the final classification is performed 

according to the majority class of the neighbors.  

The proposed architecture involves different actors: (i) a 

catalog to manage the partitioning of the dataset among nodes, 

the registration of nodes, and the final aggregation of results 

for classification; (ii) N computational nodes to carry out the 

computation on the assigned dataset portion; (iii) web sockets, 

for handling the communication between nodes and catalog. 
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Fig. 1: Conceptual architecture of distributed K-NN. 
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The registration of nodes is plug-and-play. The system 

dynamically adapts and instruments the nodes accordingly 

with the nodes currently available in the system. 

The hardware architecture is based on Zynq UltraScale+ 

MPSoC devices [5]. We used an heterogeneous cluster, 

including an XCK26 on a KV260 board as a catalog node. On 

the same node, a computation node instance runs as well, 

representing the first node of the system that is always 

present. Additional computation nodes are implemented using 

Ultra96v2 boards that embed a ZU3EG. KV260 has 4 Gb DDR, 

while Ultra96v2 is equipped with 2 Gb LPDDR. Ultra96v2 uses 

a IEEE 802.11 b/g/n WiFi interconnection, while KV260 uses 

1GbE. A router is used as the single access point for the 

network. All the platforms use an OS based on Ubuntu 22.04. 

Fig. 2 shows an example of the system with three nodes. 

3 Experimental Results 

Two different datasets have been used as case studies.     

(i) MNIST dataset [6], providing a set of grayscale images of 

handwritten digits with ten classes (i.e., numbers from 0 to 9). 

The training set consists of 60,000 images. (ii) Covertype 

dataset [7], focusing on the classification of forest cover type 

according to cartographic data (e.g., elevation, slope). The 

training set consists of 464,809 samples. 

They both achieve good classification results with standard K-

NN (accuracy > 90%), but they are prone to longer 

computation times due to their size and heterogeneity. 

Fig. 3 reports the obtained results in terms of Wall-Clock 

time varying N for an inference of 10 samples with our 

distributed architecture (K=5). For reference, we included the 

wall clock time using a traditional implementation based on 

Python Scikit-Learn. For completeness, we also included the 

performance of our system when relying on a single node. 

Using a single node, we have a degradation of performance 

since the overhead introduced by the architecture negatively 

impacts the computational time. Instead, relying on the 

distributed architecture (N>1), we observe a progressive 

performance improvement, up to 57% for MNIST and 70% for 

the Covertype dataset with N=4. Clearly, our solution does not 

influence the classification accuracy which is preserved. 

4 Conclusions and Future Works 

We introduced a promising architecture and methodology 

to exploit embedded distributed clusters based on cost-

effective devices to significantly reduce the time required for 

K-NN classification by distributing the overall effort. In the 

future, we want to explore how to increase further 

performance of different ML models by relying on 

programmable hardware available on the SoCs, combining the 

high flexibility provided by the software approach with 

performance that can be provided by custom hardware. 
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Fig. 3: Measured Wall-Clock time with a different number of 
computational nodes for 5-NN.  The sequential Scikit-Learn solution 

is showed as a reference. 
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Fig. 2: Embedded Distributed Platform with three nodes. 


