Market-based task allocation methods represent an effective strategy for scheduling heterogeneous tasks to a heterogeneous multi-agent system, e.g., a fleet of different Unmanned Aerial Vehicles (UAVs). This is mainly due to their computational efficiency, ease of hybridization with optimization techniques and adaptability to different communication architectures. In this paper, a novel hybrid auction-based task allocation architecture with multi-auctioneer agents’ behavior is proposed for an Urban Air Mobility application. The proposed method aims to solve the combined problem of: (i) scheduling parcel pick-up and delivery tasks with time deadlines while minimizing the drones’ energy consumption; (ii) scheduling battery re-charge tasks in order to ensure the service’s persistency; and (iii) evaluating safe aerial routes since the UAVs fly over populated areas. The validity of the approach is demonstrated through Monte Carlo simulations. Moreover, being the proposed architecture distributed among the UAVs, the impact of communication failures on well-defined solution quality parameters is also investigated.
Multi-Auctioneer Market-based Task Scheduling for Persistent Drone Delivery / Rinaldi, Marco; Primatesta, Stefano; Guglieri, Giorgio; Rizzo, Alessandro. - ELETTRONICO. - (2023), pp. 790-797. (Intervento presentato al convegno 2023 International Conference on Unmanned Aircraft Systems (ICUAS) tenutosi a Warsaw (PL) nel 6-9 Giugno 2023) [10.1109/ICUAS57906.2023.10155855].
Multi-Auctioneer Market-based Task Scheduling for Persistent Drone Delivery
Rinaldi, Marco;Primatesta, Stefano;Guglieri, Giorgio;Rizzo, Alessandro
2023
Abstract
Market-based task allocation methods represent an effective strategy for scheduling heterogeneous tasks to a heterogeneous multi-agent system, e.g., a fleet of different Unmanned Aerial Vehicles (UAVs). This is mainly due to their computational efficiency, ease of hybridization with optimization techniques and adaptability to different communication architectures. In this paper, a novel hybrid auction-based task allocation architecture with multi-auctioneer agents’ behavior is proposed for an Urban Air Mobility application. The proposed method aims to solve the combined problem of: (i) scheduling parcel pick-up and delivery tasks with time deadlines while minimizing the drones’ energy consumption; (ii) scheduling battery re-charge tasks in order to ensure the service’s persistency; and (iii) evaluating safe aerial routes since the UAVs fly over populated areas. The validity of the approach is demonstrated through Monte Carlo simulations. Moreover, being the proposed architecture distributed among the UAVs, the impact of communication failures on well-defined solution quality parameters is also investigated.File | Dimensione | Formato | |
---|---|---|---|
paper_ICUAS_2023_version_of_record.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
861.78 kB
Formato
Adobe PDF
|
861.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2979665