The last decade witnessed an unprecedented spread of robotics. The production paradigm of Industry 4.0 and 5.0 yielded collaborative robots in production lines of all sizes. Also, the robots started leaving the industrial scenario to play a leading role in the field of personal assistance. These environments share a common challenge, i.e. the safety of people working and/or living around the robots. Collision avoidance control techniques are essential to improve such aspect, by preventing impacts that can occur between the robot and humans or objects. The paper extends algorithms already developed by the authors for robotic arms to the case of mobile manipulators. The control strategy, which has been refined in the contribution of the robot bodies, has then been tested in two simulated case studies involving an industrial mobile robot and the custom service robot Paquitop, developed at Politecnico di Torino.

Dynamic Obstacle Avoidance for Omnidirectional Mobile Manipulators / Neri, F.; Scoccia, C.; Carbonari, L.; Palmieri, G.; Callegari, M.; Tagliavini, L.; Colucci, G.; Quaglia, G.. - STAMPA. - 122 MMS:(2022), pp. 746-754. (Intervento presentato al convegno The 4th IFToMM ITALY Conference tenutosi a Napoli (IT) nel 7-9 September 2022) [10.1007/978-3-031-10776-4_86].

Dynamic Obstacle Avoidance for Omnidirectional Mobile Manipulators

Carbonari L.;Callegari M.;Tagliavini L.;Colucci G.;Quaglia G.
2022

Abstract

The last decade witnessed an unprecedented spread of robotics. The production paradigm of Industry 4.0 and 5.0 yielded collaborative robots in production lines of all sizes. Also, the robots started leaving the industrial scenario to play a leading role in the field of personal assistance. These environments share a common challenge, i.e. the safety of people working and/or living around the robots. Collision avoidance control techniques are essential to improve such aspect, by preventing impacts that can occur between the robot and humans or objects. The paper extends algorithms already developed by the authors for robotic arms to the case of mobile manipulators. The control strategy, which has been refined in the contribution of the robot bodies, has then been tested in two simulated case studies involving an industrial mobile robot and the custom service robot Paquitop, developed at Politecnico di Torino.
2022
978-3-031-10775-7
978-3-031-10776-4
File in questo prodotto:
File Dimensione Formato  
IFIT2022___Obstacle_avoidance.pdf

non disponibili

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.93 MB
Formato Adobe PDF
4.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2978182