In safety-critical applications, microcontrollers must satisfy strict quality constraints and performances in terms of F_max (the maximum operating frequency). Data extracted from on-chip ring oscillators (ROs) can model the F_max of integrated circuits using machine learning models. Those models are suitable for the performance screening process. Acquiring data from the ROs is a fast process that leads to many unlabeled data. Contrarily, the labeling phase (i.e., acquiring F_max) is a time-consuming and costly task, that leads to a small set of labeled data. This paper presents deep-learning-based methodologies to cope with the low number of labeled data in microcontroller performance screening. We propose a method that takes advantage of the high number of unlabeled samples in a semi-supervised learning fashion. We derive deep feature extractor models that project data into higher dimensional spaces and use the data feature embedding to face the performance prediction problem with simple linear regression. Experiments showed that the proposed models outperformed state-of-the-art methodologies in terms of prediction error and permitted us to use a significantly smaller number of devices to be characterized, thus reducing the time needed to build ML models by a factor of six with respect to baseline approaches.

Semi-Supervised Deep Learning for Microcontroller Performance Screening / Bellarmino, Nicolo; Cantoro, Riccardo; Huch, Martin; Kilian, Tobias; Schlichtmann, Ulf; Squillero, Giovanni. - (2023), pp. 1-6. (Intervento presentato al convegno 2023 IEEE European Test Symposium (ETS) tenutosi a Venezia (IT) nel 22-26 May 2023) [10.1109/ETS56758.2023.10174083].

Semi-Supervised Deep Learning for Microcontroller Performance Screening

Bellarmino, Nicolo;Cantoro, Riccardo;Squillero, Giovanni
2023

Abstract

In safety-critical applications, microcontrollers must satisfy strict quality constraints and performances in terms of F_max (the maximum operating frequency). Data extracted from on-chip ring oscillators (ROs) can model the F_max of integrated circuits using machine learning models. Those models are suitable for the performance screening process. Acquiring data from the ROs is a fast process that leads to many unlabeled data. Contrarily, the labeling phase (i.e., acquiring F_max) is a time-consuming and costly task, that leads to a small set of labeled data. This paper presents deep-learning-based methodologies to cope with the low number of labeled data in microcontroller performance screening. We propose a method that takes advantage of the high number of unlabeled samples in a semi-supervised learning fashion. We derive deep feature extractor models that project data into higher dimensional spaces and use the data feature embedding to face the performance prediction problem with simple linear regression. Experiments showed that the proposed models outperformed state-of-the-art methodologies in terms of prediction error and permitted us to use a significantly smaller number of devices to be characterized, thus reducing the time needed to build ML models by a factor of six with respect to baseline approaches.
2023
979-8-3503-3634-4
File in questo prodotto:
File Dimensione Formato  
2023_ETS_Semi_Supersived_Learning (2).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 389.62 kB
Formato Adobe PDF
389.62 kB Adobe PDF Visualizza/Apri
Semi-Supervised_Deep_Learning_for_Microcontroller_Performance_Screening.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2976248