A Pontryagin-based approach to solve a class of constrained Nonlinear Model Predictive Control problems is proposed, which employs the method of penalty functions for dealing with the state constraints. Unlike the existing works in literature, the proposed method is able to cope with nonlinear input and state constraints without any significant modification of the optimization algorithm. Theoretical results are tested and confirmed by numerical simulations on the Lotka-Volterra prey/predator nonlinear system.
A penalty function approach to constrained Pontryagin-based Nonlinear Model Predictive Control / Pagone, Michele; Boggio, Mattia; Novara, Carlo; Proskurnikov, Anton; Calafiore, Giuseppe. - ELETTRONICO. - (2022). (Intervento presentato al convegno IEEE Conference on Decision and Control tenutosi a Cancún, Mexico nel 6-9 December, 2022) [10.1109/CDC51059.2022.9992438].
A penalty function approach to constrained Pontryagin-based Nonlinear Model Predictive Control
Michele Pagone;Mattia Boggio;Carlo Novara;Anton Proskurnikov;Giuseppe Calafiore
2022
Abstract
A Pontryagin-based approach to solve a class of constrained Nonlinear Model Predictive Control problems is proposed, which employs the method of penalty functions for dealing with the state constraints. Unlike the existing works in literature, the proposed method is able to cope with nonlinear input and state constraints without any significant modification of the optimization algorithm. Theoretical results are tested and confirmed by numerical simulations on the Lotka-Volterra prey/predator nonlinear system.File | Dimensione | Formato | |
---|---|---|---|
A penalty function approach to constrained Pontryagin-based Nonlinear Model Predictive Control.pdf
accesso aperto
Descrizione: Manuscript
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
482.64 kB
Formato
Adobe PDF
|
482.64 kB | Adobe PDF | Visualizza/Apri |
Pagone-APenalty.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2971274