This paper presents a combination of guidance and control algorithms, for spacecraft proximity operations in presence of multiple obstacles. The guidance algorithm is based on the theory of artificial potential field (APF) and the control algorithm is based on the theory of sliding mode control (SMC). The effects of both uncertainties and external disturbances are considered in this research. The proposed strategy is validated both by simulations and by experiments on a real testbed. The proposed algorithm appears to be suitable for autonomous, real-time control of complex maneuvers with a minimum on-board computational effort. It is also able to avoid obstacles while avoiding the local minimum issues in APF algorithms.
Artificial Potential Field and Sliding Mode Strategies for Proximity Operations with Obstacle Avoidance / Bloise, N.; Capello, E.; Park, H.; Punta, E.; Romano, M.. - 2018-:(2018), pp. 221-226. (Intervento presentato al convegno 15th International Workshop on Variable Structure Systems, VSS 2018 tenutosi a Graz University of Technology, aut nel 2018) [10.1109/VSS.2018.8460264].
Artificial Potential Field and Sliding Mode Strategies for Proximity Operations with Obstacle Avoidance
Bloise N.;Capello E.;Punta E.;Romano M.
2018
Abstract
This paper presents a combination of guidance and control algorithms, for spacecraft proximity operations in presence of multiple obstacles. The guidance algorithm is based on the theory of artificial potential field (APF) and the control algorithm is based on the theory of sliding mode control (SMC). The effects of both uncertainties and external disturbances are considered in this research. The proposed strategy is validated both by simulations and by experiments on a real testbed. The proposed algorithm appears to be suitable for autonomous, real-time control of complex maneuvers with a minimum on-board computational effort. It is also able to avoid obstacles while avoiding the local minimum issues in APF algorithms.File | Dimensione | Formato | |
---|---|---|---|
bloise2018.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2800554