A growing presence of mobile agents is envisaged in the smart factories scenario of the next future. The safe motion of traditional Automated Guided Vehicles in human-shared workspaces can be achieved thanks to the support of a fleet of Autonomous Mobile Robots, acting as a net of meta-sensors, able to detect the human presence and share the information. This paper proposes a preliminary working implementation of one meta-sensor module, exploiting the synergistic use of different sensors through an overall affordable and accessible sensor data fusion algorithm. Experimental results in a laboratory environment confirm the validity of the approach.
Sensor data fusion for smart AMRs in human-shared industrial workspaces / Indri, Marina; Sibona, Fiorella; Cen Cheng, Pangcheng David. - ELETTRONICO. - (2019), pp. 738-743. (Intervento presentato al convegno IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society tenutosi a Lisbon, Portugal nel 14-17 Oct. 2019) [10.1109/IECON.2019.8927622].
Sensor data fusion for smart AMRs in human-shared industrial workspaces
Indri, Marina;Sibona, Fiorella;Cen Cheng, Pangcheng David
2019
Abstract
A growing presence of mobile agents is envisaged in the smart factories scenario of the next future. The safe motion of traditional Automated Guided Vehicles in human-shared workspaces can be achieved thanks to the support of a fleet of Autonomous Mobile Robots, acting as a net of meta-sensors, able to detect the human presence and share the information. This paper proposes a preliminary working implementation of one meta-sensor module, exploiting the synergistic use of different sensors through an overall affordable and accessible sensor data fusion algorithm. Experimental results in a laboratory environment confirm the validity of the approach.File | Dimensione | Formato | |
---|---|---|---|
IECON2019.pdf
non disponibili
Descrizione: Versione editoriale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.51 MB
Formato
Adobe PDF
|
3.51 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
main_rev_authors.pdf
accesso aperto
Descrizione: Versione autori accettata per la pubblicazione
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
3.36 MB
Formato
Adobe PDF
|
3.36 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2785718