General Purpose Graphics Processing Units (GPGPUs) have been used in the last decades as accelerators in high demanding data processing applications, such as multimedia processing and high-performance computing. Nowadays, these devices are becoming popular even in safety-critical applications, such as autonomous and semi-autonomous vehicles. However, these devices can suffer from the effects of transient faults, such as those produced by radiation effects. These effects can be represented in the system as Single Event Upsets (SEUs) and are able to generate intolerable application misbehaviors in safety critical environments. In this work, we extended the capabilities of an open-source VHDL GPGPU model (FlexGrip) in order to study and analyze in a much more detailed manner the effects of SEUs in some critical modules within a GPGPU. Simulation results showed that scheduler controller has different levels of SEU sensibility depending on the affected location. Moreover, a reduced number of execution units, in the GPGPU can decrease the system reliability.

An extended model to support detailed GPGPU reliability analysis / Du, B.; RODRIGUEZ CONDIA, JOSIE ESTEBAN; Reorda, M. S.. - ELETTRONICO. - (2019), pp. 1-6. ((Intervento presentato al convegno 14th IEEE International Conference on Design and Technology of Integrated Systems In Nanoscale Era, DTIS 2019 tenutosi a grc nel 2019 [10.1109/DTIS.2019.8735047].

An extended model to support detailed GPGPU reliability analysis

Du B.;RODRIGUEZ CONDIA, JOSIE ESTEBAN;Reorda M. S.
2019

Abstract

General Purpose Graphics Processing Units (GPGPUs) have been used in the last decades as accelerators in high demanding data processing applications, such as multimedia processing and high-performance computing. Nowadays, these devices are becoming popular even in safety-critical applications, such as autonomous and semi-autonomous vehicles. However, these devices can suffer from the effects of transient faults, such as those produced by radiation effects. These effects can be represented in the system as Single Event Upsets (SEUs) and are able to generate intolerable application misbehaviors in safety critical environments. In this work, we extended the capabilities of an open-source VHDL GPGPU model (FlexGrip) in order to study and analyze in a much more detailed manner the effects of SEUs in some critical modules within a GPGPU. Simulation results showed that scheduler controller has different levels of SEU sensibility depending on the affected location. Moreover, a reduced number of execution units, in the GPGPU can decrease the system reliability.
978-1-7281-3424-6
File in questo prodotto:
File Dimensione Formato  
camera ready version.pdf

accesso aperto

Descrizione: Post print version of the paper (it does not include copyright marks of the publisher).
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri
08735047.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 274.19 kB
Formato Adobe PDF
274.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2750455
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo