Space Debris removal is a critical issue related to space research. One of the key requirements for a removal mission is the assessment of the target rotational dynamics. Ground observations are not sufficient for reaching the accuracy level required to guide the chaser spacecraft during the capture maneuver. Moreover, the guidance and control strategy for the chaser to approach the target is a critical aspect of such missions. This paper presents simulation results of two complementary methods, one for estimating the entire rotational dynamic state of the target and the other for accurately controlling the approach maneuver. In particular, the information coming from the identification and prediction of the actual motion of the tumbling axis of the target is exploited by the second method for aligning the docking interface of the chaser with that axis at the instant of capture. The dynamics estimation is based on Kalman filtering in an original combination with compressive sampling techniques for making the method robust to failures of observation sensors. The guidance of the chaser is based on a model predictive control law. The combined simulation of the employment of the methods has revealed the feasibility of the global approach.
Control of a Noncooperative Approach Maneuver Based on Debris Dynamics Feedback / Corpino, Sabrina; Mauro, Stefano; Pastorelli, Stefano; Stesina, Fabrizio; Biondi, Gabriele; Franchi, Loris; Mohtar, Tharek. - In: JOURNAL OF GUIDANCE CONTROL AND DYNAMICS. - ISSN 0731-5090. - STAMPA. - 41:2(2018), pp. 431-448. [10.2514/1.G002685]
Control of a Noncooperative Approach Maneuver Based on Debris Dynamics Feedback
Corpino, Sabrina;Mauro, Stefano;Pastorelli, Stefano;Stesina, Fabrizio;Biondi, Gabriele;Franchi, Loris;Mohtar, Tharek
2018
Abstract
Space Debris removal is a critical issue related to space research. One of the key requirements for a removal mission is the assessment of the target rotational dynamics. Ground observations are not sufficient for reaching the accuracy level required to guide the chaser spacecraft during the capture maneuver. Moreover, the guidance and control strategy for the chaser to approach the target is a critical aspect of such missions. This paper presents simulation results of two complementary methods, one for estimating the entire rotational dynamic state of the target and the other for accurately controlling the approach maneuver. In particular, the information coming from the identification and prediction of the actual motion of the tumbling axis of the target is exploited by the second method for aligning the docking interface of the chaser with that axis at the instant of capture. The dynamics estimation is based on Kalman filtering in an original combination with compressive sampling techniques for making the method robust to failures of observation sensors. The guidance of the chaser is based on a model predictive control law. The combined simulation of the employment of the methods has revealed the feasibility of the global approach.File | Dimensione | Formato | |
---|---|---|---|
Corpino Mauro Pastorelli GND 2018.pdf
accesso aperto
Descrizione: Revisione finale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
2.13 MB
Formato
Adobe PDF
|
2.13 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2689334
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo