Microcontroller (MCU) performance screening ensures devices meet the maximum operating frequency Fmax specification. Speed Monitors (SMONs), implemented as ring oscillators, are used to estimate Fmax. Traditional machine learning (ML) models have been explored for this task but require extensive feature engineering and tuning. This work investigates Tabular Foundation Models, specifically TabPFN, for MCU performance prediction. TabPFN leverages in-context learning, enabling accurate inference without dataset-specific training. We evaluate its performance on a composite dataset combining four distinct MCU product families. Results show that TabPFN matches or exceeds baseline ML models while eliminating the need for manual optimization, offering a promising direction for efficient screening in semiconductor manufacturing with minimal human supervision.

Minimal Supervision, Maximum Accuracy: TabPFN for Microcontroller Performance Prediction / Bellarmino, Nicolò; Cantoro, Riccardo; Huch, Martin; Kilian, Tobias. - STAMPA. - (2025), pp. 470-473. ( International Test Conference (ITC) 2025 San Diego, California (USA) 21-26 September, 2025) [10.1109/ITC58126.2025.00067].

Minimal Supervision, Maximum Accuracy: TabPFN for Microcontroller Performance Prediction

Nicolò Bellarmino;Riccardo Cantoro;
2025

Abstract

Microcontroller (MCU) performance screening ensures devices meet the maximum operating frequency Fmax specification. Speed Monitors (SMONs), implemented as ring oscillators, are used to estimate Fmax. Traditional machine learning (ML) models have been explored for this task but require extensive feature engineering and tuning. This work investigates Tabular Foundation Models, specifically TabPFN, for MCU performance prediction. TabPFN leverages in-context learning, enabling accurate inference without dataset-specific training. We evaluate its performance on a composite dataset combining four distinct MCU product families. Results show that TabPFN matches or exceeds baseline ML models while eliminating the need for manual optimization, offering a promising direction for efficient screening in semiconductor manufacturing with minimal human supervision.
2025
979-8-3315-7041-5
File in questo prodotto:
File Dimensione Formato  
2025_ITC_FOUNDATION_MODELS_POSTER (3).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 273.38 kB
Formato Adobe PDF
273.38 kB Adobe PDF Visualizza/Apri
Minimal_Supervision_Maximum_Accuracy_TabPFN_for_Microcontroller_Performance_Prediction.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 941.59 kB
Formato Adobe PDF
941.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3002056