Reliable anomaly detection in satellite telemetry is critical for mission success, yet traditional threshold-based methods struggle with complex and evolving patterns. This work presents machine learning (ML) techniques to analyze high-dimensional telemetry data. Evaluations of real-world satellite telemetry datasets demonstrate the potential of ML to enhance spacecraft health monitoring and reduce manual intervention.
AI-Powered Anomaly Detection for Satellite Telemetry / Buccellato, Federico; Nicolini, Davide; Vacca, Eleonora; De Sio, Corrado; Sterpone, Luca. - ELETTRONICO. - (2025), pp. 222-223. (Intervento presentato al convegno CF '25: 22st ACM International Conference on Computing Frontiers tenutosi a Cagliari (ITA) nel 28-30 May 2025) [10.1145/3719276.3727953].
AI-Powered Anomaly Detection for Satellite Telemetry
Buccellato, Federico;Nicolini, Davide;Vacca, Eleonora;De Sio, Corrado;Sterpone, Luca
2025
Abstract
Reliable anomaly detection in satellite telemetry is critical for mission success, yet traditional threshold-based methods struggle with complex and evolving patterns. This work presents machine learning (ML) techniques to analyze high-dimensional telemetry data. Evaluations of real-world satellite telemetry datasets demonstrate the potential of ML to enhance spacecraft health monitoring and reduce manual intervention.File | Dimensione | Formato | |
---|---|---|---|
cf25_42.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
393.6 kB
Formato
Adobe PDF
|
393.6 kB | Adobe PDF | Visualizza/Apri |
3719276.3727953.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
421.56 kB
Formato
Adobe PDF
|
421.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2999715