This research presents a comprehensive approach for mitigating noise pollution from Unmanned Aerial Vehicles (UAVs) in urban environment by using Reinforcement Learning (RL) for flight path planning. Focusing on the city of Turin, Italy, the study utilizes its diverse urban architecture to develop a detailed 3D occupancy grid map, and a population density map. A dynamic noise source model adjusts noise emissions based on the UAV velocity, while acoustic ray tracing simulates noise propagation in the environment. The Deep Deterministic Policy Gradient (DDPG) algorithm optimizes flight paths, minimizing the noise impact, and balancing both the path length and the population density located under the UAV path. The simulation results demonstrate significant noise reduction, suggesting scalability and adaptability for global urban environments, contributing to sustainable urban air mobility by addressing noise pollution.

Noise-Aware UAV Path Planning in Urban Environment with Reinforcement Learning / Sarhan, Shahin; Rinaldi, Marco; Primatesta, Stefano; Guglieri, Giorgio. - In: ENGINEERING PROCEEDINGS. - ISSN 2673-4591. - ELETTRONICO. - 90:(2025), p. 3. [10.3390/engproc2025090003]

Noise-Aware UAV Path Planning in Urban Environment with Reinforcement Learning

Rinaldi, Marco;Primatesta, Stefano;Guglieri, Giorgio
2025

Abstract

This research presents a comprehensive approach for mitigating noise pollution from Unmanned Aerial Vehicles (UAVs) in urban environment by using Reinforcement Learning (RL) for flight path planning. Focusing on the city of Turin, Italy, the study utilizes its diverse urban architecture to develop a detailed 3D occupancy grid map, and a population density map. A dynamic noise source model adjusts noise emissions based on the UAV velocity, while acoustic ray tracing simulates noise propagation in the environment. The Deep Deterministic Policy Gradient (DDPG) algorithm optimizes flight paths, minimizing the noise impact, and balancing both the path length and the population density located under the UAV path. The simulation results demonstrate significant noise reduction, suggesting scalability and adaptability for global urban environments, contributing to sustainable urban air mobility by addressing noise pollution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2998145
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo