Learning deep super-resolution models without the need for ground truth data at a higher resolution is critical for satellite imaging applications. This is either due to the lack of existing images at better resolution for certain target wavelengths or the existence of significant domain gaps between the images of different satellites. In this paper, we propose a method and neural network architecture for a multi-image super-resolution problem, where each image in the input stack might be affected by a different degradation process. A test-time finetuning procedure allows to dynamically account for the degradations observed for a specific set of LR inputs, improving over baseline results.
Degradation-Aware Self-Supervised Multi-Temporal Super-Resolution / Impieri, Matteo; Valsesia, Diego; Bianchi, Tiziano; Magli, Enrico. - ELETTRONICO. - (2024), pp. 1099-1102. (Intervento presentato al convegno IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium tenutosi a Athens (Greece) nel 07-12 July 2024) [10.1109/igarss53475.2024.10641268].
Degradation-Aware Self-Supervised Multi-Temporal Super-Resolution
Impieri, Matteo;Valsesia, Diego;Bianchi, Tiziano;Magli, Enrico
2024
Abstract
Learning deep super-resolution models without the need for ground truth data at a higher resolution is critical for satellite imaging applications. This is either due to the lack of existing images at better resolution for certain target wavelengths or the existence of significant domain gaps between the images of different satellites. In this paper, we propose a method and neural network architecture for a multi-image super-resolution problem, where each image in the input stack might be affected by a different degradation process. A test-time finetuning procedure allows to dynamically account for the degradations observed for a specific set of LR inputs, improving over baseline results.File | Dimensione | Formato | |
---|---|---|---|
Degradation-Aware_Self-Supervised_Multi-Temporal_Super-Resolution.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Unsupervised_MISR_IGARSS24.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
299.01 kB
Formato
Adobe PDF
|
299.01 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2992847