Learning deep super-resolution models without the need for ground truth data at a higher resolution is critical for satellite imaging applications. This is either due to the lack of existing images at better resolution for certain target wavelengths or the existence of significant domain gaps between the images of different satellites. In this paper, we propose a method and neural network architecture for a multi-image super-resolution problem, where each image in the input stack might be affected by a different degradation process. A test-time finetuning procedure allows to dynamically account for the degradations observed for a specific set of LR inputs, improving over baseline results.

Degradation-Aware Self-Supervised Multi-Temporal Super-Resolution / Impieri, Matteo; Valsesia, Diego; Bianchi, Tiziano; Magli, Enrico. - ELETTRONICO. - (2024), pp. 1099-1102. (Intervento presentato al convegno IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium tenutosi a Athens (Greece) nel 07-12 July 2024) [10.1109/igarss53475.2024.10641268].

Degradation-Aware Self-Supervised Multi-Temporal Super-Resolution

Impieri, Matteo;Valsesia, Diego;Bianchi, Tiziano;Magli, Enrico
2024

Abstract

Learning deep super-resolution models without the need for ground truth data at a higher resolution is critical for satellite imaging applications. This is either due to the lack of existing images at better resolution for certain target wavelengths or the existence of significant domain gaps between the images of different satellites. In this paper, we propose a method and neural network architecture for a multi-image super-resolution problem, where each image in the input stack might be affected by a different degradation process. A test-time finetuning procedure allows to dynamically account for the degradations observed for a specific set of LR inputs, improving over baseline results.
2024
979-8-3503-6032-5
File in questo prodotto:
File Dimensione Formato  
Degradation-Aware_Self-Supervised_Multi-Temporal_Super-Resolution.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Unsupervised_MISR_IGARSS24.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 299.01 kB
Formato Adobe PDF
299.01 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2992847