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DEGRADATION-AWARE SELF-SUPERVISED MULTI-TEMPORAL SUPER-RESOLUTION

Matteo Impieri, Diego Valsesia, Tiziano Bianchi, Enrico Magli

Politecnico di Torino
Department of Electronics and Telecommunications

Torino, Italy

ABSTRACT
Learning deep super-resolution models without the need for
ground truth data at a higher resolution is critical for satel-
lite imaging applications. This is either due to the lack of
existing images at better resolution for certain target wave-
lengths or the existence of significant domain gaps between
the images of different satellites. In this paper, we propose
a method and neural network architecture for a multi-image
super-resolution problem, where each image in the input stack
might be affected by a different degradation process. A test-
time finetuning procedure allows to dynamically account for
the degradations observed for a specific set of LR inputs, im-
proving over baseline results.

Index Terms— Multi-image super-resolution, kernel es-
timation, self-supervised learning.

1. INTRODUCTION

Numerous remote sensing applications demand the acquisi-
tion of highly detailed images, but this is often hindered by
limitations in satellite sensor capabilities and communication
channels. Recently, multi-image super-resolution (MISR)
techniques showed that powerful deep-learning models can
effectively combine multiple low-resolution (LR) images of
the same location at different times to reconstruct a high-
resolution image (HR), overcoming challenges like varying
illumination, cloud cover, and temporal changes.

However, existing literature predominantly approaches
the MISR problem from a supervised learning perspective
[1, 2, 3, 4], relying on ground truth HR images during train-
ing. This is a common setup, for example, with the Proba-V
challenge dataset [5] where ground truths at higher resolution
are available due to the unique nature of the Proba-V setting.
This poses challenges, as collecting data at higher resolutions
can be expensive or not feasible at all. In fact, for certain
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wavelengths there might not be a satellite in operation that
already provides better imagery. In other cases, there might
be a significant mismatch between the features of images
captured by two different satellites, causing a domain gap
that hinders model learning and successful inference.

For these reasons, more research is needed in the direc-
tion of methods that do not require imagery at higher resolu-
tion. This setting is particularly challenging for MISR tech-
niques where a variety of factors might affect the degrada-
tion that each of the images in the time series has undergone.
In our previous investigation [6], we showed the potential of
unsupervised deep learning methods to improve over classic
techniques, even for the MISR setting, while still reporting
a gap with respect to the performance achievable by super-
vised training. Moreover, our previous work did not provide
an end-to-end system, relying instead of handcrafted degra-
dation kernels for the training process.

In this paper, we employ data-driven techniques to extract
estimates of real degradation kernels from the available LR
images and train a state-of-the-art MISR neural network in a
self-supervised manner. The training process is such that the
network learns to be robust to a wide set of realistic degra-
dations, as well as to the fact that each image in the LR in-
put time series might be affected by a different degradation.
Moreover, we show that a test-time finetuning procedure is
able to dynamically calibrate the pretrained neural network
to the specific degradation present in the test input, yielding
superior results.

2. BACKGROUND

The challenge of image Super-Resolution (SR) has garnered
significant attention over the years, particularly witnessing
notable advancements recently due to the application of deep
learning methods. Existing literature, encompassing both
conventional photographs and remote sensing images, has
predominantly concentrated on Single-Image SR (SISR).
Common approaches involve supervised training, where
High-Resolution (HR) images at the target resolution are
essential, following either paired or unpaired methods.

The literature on blind SISR [7] is particularly relevant
to this work, emphasizing the importance of understanding



the degradation process that generates LR observations from
HR images in real-world SR. This is key to enable training
that does not require ground truth images at the target reso-
lution. Unsupervised or self-supervised training often relies
on assuming invariance across scales [8], where the function
mapping LR to HR images is assumed to be the same for any
LR-HR resolution pair affected by the same degradation pro-
cess. This hypothesis means that is is possible to generate
further degraded images at a coarser resolution (CR) directly
from LR observations and to train a model to recover the orig-
inal LR. Post-training, the model is applied in an extrapola-
tion mode to map the LR image to a higher resolution, but the
success depends on accurate modeling of the degradation pro-
cess; any mismatch significantly degrades SR performance.

For what concerns the MISR setting, most of the current
attention has been on supervised training [2, 3], with only a
few exceptions [9]. In remote sensing, the Proba-V dataset
has been instrumental for many MISR works due to LR and
HR images at different resolutions from the same platform.
Emerging datasets [10] offer increased diversity and higher
resolution imagery, potentially benefiting the further develop-
ment of both supervised and unsupervised methods. In our
earlier work [6], we explored the potential of unsupervised
training by handcrafting some degradation models in order to
train the PIUNet model [1] in a self-supervised manner. The
work showed promising performance, although the gap with
respect to supervised training suggested that more work was
needed, e.g. in the direction of a fully data-driven method.

3. METHOD

In this section, we explore the design of a MISR technique
based on deep neural networks that can be trained from LR
images only and is aware of the degradation operator that gen-
erated each of the input images. In order to train the model
with only LR images, we resort to the commonly-used self-
supervised approach that relies on scale invariance. In prac-
tice, the LR images are further degraded with operators that
resemble the ones that actually generated the LR images and
downsampled to a coarse resolution (CR). The model then is
trained to recover an LR image from a set of CR images.

3.1. Self-supervised training

Since we are dealing with a MISR setting, rather than SISR, it
is important to remember that the multiple LR images that are
provided as input may be affected by different degradations.
In fact, the degradation is not only a function of the optics but
also of the specific processing steps, such as orthorectifica-
tion, used on it, thus making the degradation operator time-
varying and, possibly, space-varying. The first step towards
self-supervised training is therefore estimating a set of degra-
dation operators to be used for the LR-to-CR degradation,
such that they are as faithful as possible to the real HR-to-LR

Fig. 1. Examples of degradation kernels from LR Proba-V
images as estimated by DIP-FKP.

degradations. In our earlier exploration [6], we handcrafted
such operators to demonstrate the potential of unsupervised
MISR. In this work, we use a data-driven approach to directly
estimate realistic degradation operators from the LR images
themselves.

To this end, we use the DIP-FKP [11] approach to kernel
estimation on each of the LR images. The approach uses two
neural networks, an image generator (DIP) and a kernel gen-
erator (FKP), that can be optimized on a single LR image in
order to estimate the kernel of the degradation filter used from
HR to LR. The image generator maps a latent noise zx to an
HR image, while the kernel generator maps a different latent
noise zk to a filter kernel. The generated HR image is then
filtered with such kernel and downsampled to generate an LR
image to be compared with the available LR image. The ker-
nel generator is pretrained to generate anisotropic Gaussian
kernels, while DIP is randomly initialized. In order to find
the degradation kernel associated to a specific LR image, an
optimization problem is solved to minimize the error between
the generated LR image and the target one with respect to the
image generator weights and the kernel latent noise zk. Once
this operation is repeated for all the LR images in the train-
ing set, we have a collection of filter kernels that approximate
the degradations that generated the LR images. Examples of
these kernels are shown in Fig. 1.

The estimated kernels are then randomly selected to de-
grade T LR images of a multi-temporal series to CR, which
will serve as input to the PIUnet neural network model for
MISR. PIUnet is trained with the L1 loss between its output
and one of the LR images that generated the CR inputs. This
procedure makes PIUnet more robust to realistic degradation
kernels which may vary from image to image.

3.2. Test-time finetuning

The previously explained approach follows a conventional
self-supervised approach to building robustness to kernel
variations. However, in learning a general super-resolution
model, it does not exploit knowledge of the specific degra-
dation affecting a specific input. This could enhance the
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Fig. 2. Test-time finetuning (TTF) of PIUnet to calibrate for the kernel extracted by FKP for the specific LR input.

performance of a model pretrained in the previous manner,
by acting as a sort of “calibration” of the neural network to
the specific degradations observed for a particular input. In
order to achieve this we propose to use a mechanism similar
to the DIP-FKP approach used in kernel estimation but for
this calibration purpose. An overview is shown in Fig. 2. In
particular, the DIP image generator is replaced by the pre-
trained PIUnet model, while leaving the FKP branch as is.
At test time, for a given input of T LR images {xLR

t }Tt=1, the
following optimization problem is solved:

min.Θ,zk

∥∥∥[FΘ({xLR
t }Tt=1) ∗G(zk)

]
↓D − xLR

1

∥∥∥
1

(1)

being FΘ the PIUnet MISR network parameterized by
weights Θ, G the FKP kernel generator and ∗ 2D convo-
lution. Notice how this optimization problem seeks to i)
optimize the latent noise zk that when passed though the FKP
network generates the kernel that is most likely to model the
HR-to-LR degradation; ii) finetune the PIUnet weights. This
finetuning acts as a calibration of PIUnet for the specific input
subject to the degradation kernel estimated by FKP. We re-
mark that over-optimization of the objective in Eq. (1) leads
to overfitting but locally acts as a calibration, in the same vein
as deep image prior [12] locally acts as a prior.

4. EXPERIMENTAL RESULTS

In this section, we present some experimental results to
benchmark the proposed self-supervised method against su-
pervised approaches and the non-data-driven solution in [6]
in a fair setting with equal neural network architectures. For
this benchmark, we use the Proba-V dataset for both train-
ing and testing. Self-supervised training only uses the LR

data, but the availability of real HR data for testing allows
us to quantitatively measure SR performance in a real setting
without having the degradation process under our control.
The paired nature of the dataset also allows straightforward
comparisons with supervised training using the HR data.
The PIUnet archicture is also used for the supervised setting,
while we also report the performance of the classic method of
iterative backprojection (IBP) [13]. All methods use T = 9
input LR images to produce a single SR image. Concerning
the proposed method, the FKP module has been pretrained to
generate kernels of size 15× 15. The test-time finetuning has
been run for a total of 50 iterations for each test scene.

Table 1 report the cPSNR metric [5] on the Proba-V test
set for the various methods under consideration. It can be no-
ticed that the results obtained with only the self-supervised
training on the the estimated kernels yields similar results to
the results with handcrafted kernels reported in [6]. How-
ever, the calibration procedure proposed for test-time finetun-
ing (TTF) is able to substantially improve performance.

We remark that a limitation of the proposed method is
the estimation of shift-invariant kernels. Indeed, as previ-
ously discussed in [6], and emphasised by the results in Table
1, a more suitable model would be to have spatially-varying
per-pixel kernels to properly account for effects of process-
ing like orthorectification. In this regard, we report a neg-
ative result obtained during the development of this work,
in which a state-of-the-art per-pixel kernel estimation net-
work [14] failed to generate physically-plausible kernels from
Proba-V images. Further work is therefore needed to extend
the current approach to spatially-varying degradation models.



Table 1. Quantitative performance - cPSNR (dB)
Classic Deep unsupervised Deep supervised
IBP [13] PIUnet PIUnet-FKP TTF PIUnet [1]

- Handcrafted [6] Handcrafted [6] Learned kernel Learned kernel -
- shift-invariant kernel per-pixel kernel with DIP-FKP with DIP-FKP -

NIR 45.96 46.78 46.98 46.84 47.06 48.41
RED 48.21 49.02 48.97 48.86 49.25 50.53

5. CONCLUSIONS

We presented an approach to self-supervised multi-image
super-resolution that is capable of estimating real degradation
kernels for the available LR images and use them to train a
MISR neural network that is robust to multiple degradations
and does not require ground truth images at better resolution.
We also showed a test-time finetuning procedure that is ca-
pable of dynamically estimating the specific degradations of
the current input images and calibrate the pretrained MISR
network accordingly.
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