This paper introduces an innovative approach using microwaves (MW) enhanced with a machine learning (ML) clas- sifier to identify products contaminated with external intrusions and distinguish the contaminant type. The non-invasive MW sensing system is intended to function in real-time in a food production chain. For the multi-class classification, we use the Support Vector Machine (SVM) algorithm, training it on datasets generated from the scattering parameters acquired during the measurements phase. A precision of 100% accuracy is achieved for 200 measurement samples.
Support Vector Machine for Multiclass Contaminant Classification in Food Products using Microwave Sensing / Darwish, Ali; Ricci, Marco; Migliaccio, Claire; Vasquez, Jorge Alberto Tobon; Vipiana, Francesca. - ELETTRONICO. - (2024). (Intervento presentato al convegno International Symposium on Antennas and Propagation and ITNC-USNC-URSI Radio Science (AP-S/URSI 2024) tenutosi a Firenze (Italy) nel 14-19 July 2024) [10.1109/AP-S/INC-USNC-URSI52054.2024.10685942].
Support Vector Machine for Multiclass Contaminant Classification in Food Products using Microwave Sensing
Darwish, Ali;Vasquez, Jorge Alberto Tobon;Vipiana, Francesca
2024
Abstract
This paper introduces an innovative approach using microwaves (MW) enhanced with a machine learning (ML) clas- sifier to identify products contaminated with external intrusions and distinguish the contaminant type. The non-invasive MW sensing system is intended to function in real-time in a food production chain. For the multi-class classification, we use the Support Vector Machine (SVM) algorithm, training it on datasets generated from the scattering parameters acquired during the measurements phase. A precision of 100% accuracy is achieved for 200 measurement samples.File | Dimensione | Formato | |
---|---|---|---|
Support_Vector_Machine_for_Multiclass_Contaminant_Classification_in_Food_Products_using_Microwave_Sensing (1).pdf
accesso riservato
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
4.28 MB
Formato
Adobe PDF
|
4.28 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Darwish-Support.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
4.34 MB
Formato
Adobe PDF
|
4.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2992026