Upper-limb exoskeletons for industrial applications can enhance the comfort and productivity of workers by reducing muscle activity and intra-articular forces during overhead work. Current devices typically employ a spring-based mechanism to balance the gravitational torque acting on the shoulder. As an alternative, this paper presents the design of a passive upper-limb exoskeleton based on McKibben artificial muscles. The interaction forces between the exoskeleton and the user, as well as the mechanical resistance of the exoskeleton structure, were investigated to finalize the design of the device prior to its prototyping. Details are provided about the solutions adopted to assemble, wear, and regulate the exoskeleton's structure. The first version of the device weighing about 5.5 kg was manufactured and tested by two users in a motion analysis laboratory. The results of this study highlight that the exoskeleton can effectively reduce the activation level of shoulder muscles without affecting the lumbar strain.

Preliminary Testing of a Passive Exoskeleton Prototype Based on McKibben Muscles / Paterna, Maria; De Benedictis, Carlo; Ferraresi, Carlo. - In: MACHINES. - ISSN 2075-1702. - ELETTRONICO. - 12:6(2024), pp. 1-15. [10.3390/machines12060388]

Preliminary Testing of a Passive Exoskeleton Prototype Based on McKibben Muscles

Paterna, Maria;De Benedictis, Carlo;Ferraresi, Carlo
2024

Abstract

Upper-limb exoskeletons for industrial applications can enhance the comfort and productivity of workers by reducing muscle activity and intra-articular forces during overhead work. Current devices typically employ a spring-based mechanism to balance the gravitational torque acting on the shoulder. As an alternative, this paper presents the design of a passive upper-limb exoskeleton based on McKibben artificial muscles. The interaction forces between the exoskeleton and the user, as well as the mechanical resistance of the exoskeleton structure, were investigated to finalize the design of the device prior to its prototyping. Details are provided about the solutions adopted to assemble, wear, and regulate the exoskeleton's structure. The first version of the device weighing about 5.5 kg was manufactured and tested by two users in a motion analysis laboratory. The results of this study highlight that the exoskeleton can effectively reduce the activation level of shoulder muscles without affecting the lumbar strain.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990993
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo