This paper investigates the potential of a fully behavioral approach for the generation of accurate models of digital IC buffers based on conventional kernel regressions. The proposed approach does not assume a specific model structure like the classical two-piece model representation which has been massively used in literature, offering a promising and viable alternative to facilitate the modeling of nonlinear electrical devices. The collected results represent a first proof-of-concept, aimed at demonstrating the strengths of the proposed alternative modeling approach.

Modeling of IC Buffers from Channel Responses Via Machine Learning Kernel Regression / Trinchero, Riccardo; Bradde, Tommaso; Telescu, Mihai; Stievano, Igor S.. - STAMPA. - (2024). (Intervento presentato al convegno 2024 IEEE 28th Workshop on Signal and Power Integrity (SPI) tenutosi a Lisbon (Portugal) nel May 12-15 2024) [10.1109/spi60975.2024.10539199].

Modeling of IC Buffers from Channel Responses Via Machine Learning Kernel Regression

Trinchero, Riccardo;Bradde, Tommaso;Stievano, Igor S.
2024

Abstract

This paper investigates the potential of a fully behavioral approach for the generation of accurate models of digital IC buffers based on conventional kernel regressions. The proposed approach does not assume a specific model structure like the classical two-piece model representation which has been massively used in literature, offering a promising and viable alternative to facilitate the modeling of nonlinear electrical devices. The collected results represent a first proof-of-concept, aimed at demonstrating the strengths of the proposed alternative modeling approach.
2024
979-8-3503-8293-8
File in questo prodotto:
File Dimensione Formato  
cnf-2024-spi-Authors.pdf

accesso aperto

Descrizione: cnf-2024-spi-Authors
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 460.7 kB
Formato Adobe PDF
460.7 kB Adobe PDF Visualizza/Apri
cnf-2024-spi-IEEE.pdf

accesso riservato

Descrizione: cnf-2024-spi-IEEE
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 492.59 kB
Formato Adobe PDF
492.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2989242