This paper investigates the potential of a fully behavioral approach for the generation of accurate models of digital IC buffers based on conventional kernel regressions. The proposed approach does not assume a specific model structure like the classical two-piece model representation which has been massively used in literature, offering a promising and viable alternative to facilitate the modeling of nonlinear electrical devices. The collected results represent a first proof-of-concept, aimed at demonstrating the strengths of the proposed alternative modeling approach.
Modeling of IC Buffers from Channel Responses Via Machine Learning Kernel Regression / Trinchero, Riccardo; Bradde, Tommaso; Telescu, Mihai; Stievano, Igor S.. - STAMPA. - (2024). (Intervento presentato al convegno 2024 IEEE 28th Workshop on Signal and Power Integrity (SPI) tenutosi a Lisbon (Portugal) nel May 12-15 2024) [10.1109/spi60975.2024.10539199].
Modeling of IC Buffers from Channel Responses Via Machine Learning Kernel Regression
Trinchero, Riccardo;Bradde, Tommaso;Stievano, Igor S.
2024
Abstract
This paper investigates the potential of a fully behavioral approach for the generation of accurate models of digital IC buffers based on conventional kernel regressions. The proposed approach does not assume a specific model structure like the classical two-piece model representation which has been massively used in literature, offering a promising and viable alternative to facilitate the modeling of nonlinear electrical devices. The collected results represent a first proof-of-concept, aimed at demonstrating the strengths of the proposed alternative modeling approach.File | Dimensione | Formato | |
---|---|---|---|
cnf-2024-spi-Authors.pdf
accesso aperto
Descrizione: cnf-2024-spi-Authors
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
460.7 kB
Formato
Adobe PDF
|
460.7 kB | Adobe PDF | Visualizza/Apri |
cnf-2024-spi-IEEE.pdf
non disponibili
Descrizione: cnf-2024-spi-IEEE
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
492.59 kB
Formato
Adobe PDF
|
492.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2989242