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Abstract—This paper investigates the potential of a fully
behavioral approach for the generation of accurate models of
digital IC buffers based on conventional kernel regressions. The
proposed approach does not assume a specific model structure
like the classical two-piece model representation which has been
massively used in literature, offering a promising and viable
alternative to facilitate the modeling of nonlinear electrical
devices. The collected results represent a first proof-of-concept,
aimed at demonstrating the strengths of the proposed alternative
modeling approach.

Index Terms—digital integrated circuits, buffer modeling, sig-
nal integrity, high-speed interconnects, kernel regression.

I. INTRODUCTION

Since the early 1990s, there has been an growing interest
of the signal and power integrity community in generating
accurate and efficient simulation models of digital IC buffers
for the quality and reliability assessment of high-speed digital
channels.

The above trend was stimulated by the birth and by the
subsequent improvements of the input output buffer informa-
tion specification (IBIS) which was strongly supported by the
electronic design automation (EDA) and silicon vendors [1].
IBIS suggests a physical-consistent modeling approach based
on basic building blocks inspired by the constitutive elements
composing the various IC buffers, with all the required features
and recent technological advancements (including drivers and
receivers, single-ended and differential technology, power-
supply effects and pre/de-emphasis). IBIS models for single-
ended and differential drivers assume a two-piece structure
in which the output port current of the buffer is defined by
the weighted combination of two submodels describing the
device behavior in either the high or the low logic state. This
assumption facilitates model estimation, allowing researchers
concentrating on model advancements and additional features.

Based on the above picture, IC buffer modeling inspired
by the IBIS idea has always been the mainstream solution
which is well supported by both the EDA tools and companies,
representing the natural playground for research (e.g., see [2]
and references therein). A wide variety of research papers can
be found in the literature, with the common background of
assuming a two-piece structure and with the main differences
on the type and structure of submodels, ranging from physical-
consistent modeling approaches to more behavioral solutions

(mostly Artificial Neural Networks (ANNs) or Recurrent Neu-
ral Networks (RNNs)) [3]–[11].

In addition, some attempts in addressing the problem of IC
modeling via a fully black-box behavioral approach based on
ANNs have been followed [12], [13]. Even if a good accuracy
was observed, some inherent critical aspects still have to be
solved in order to have a robust modeling framework. ANNs
generally require a possibly large number of neurons, a clever
algorithm for training and for forcing a physical consistent
behavior of models in a typical simulation environment, and
a careful design of the training sequences, being this latter
aspect also shared by the approaches in which a two-piece
structure is assumed. In addition, a possible alternative blind
modeling solution should be able to be flexible and general,
to accommodate the inherent multiport electrical characteristic
of IC buffers.

Among the above requirements, a key role is played by
the simplification of the modeling procedure, including the
training which should be done on-the-fly, i.e., based on the
observation of device responses in a typical application sce-
nario, without specific requirements and setup for custom
excitation. Some preliminary efforts were tried along the
years [14]–[16], however failing to match an ultimate solution
to the development of a general, simple, accurate and scalable
approach to device modeling.

Undoubtedly kernel-based machine learning regression can
be seen as a promising candidate for the above modeling prob-
lem [17], [18]. The linear model structure adopted by kernel
regressions has the key advantage of radically simplifying the
training phase when a “relatively small” set of training data
is used, compared to the more flexible ANN structures [17],
[19], [20].

In this paper, the kernel ridge regression (KRR) is used for
the identification of the dynamic nonlinear characteristic of
a single-ended IC buffer, offering a first preliminary study
on the feasibility and strengths of this alternate approach.
Emphasis is given on model generation through a simple
behavioral procedure based on the observation of the IC
transient responses during normal operation of devices.

II. STATEMENT OF THE PROBLEM

In this work, we propose the generation of a mathematical
model allowing to mimic the electrical behavior of the output



port current of a digital IC driver like the one shown in the
scheme of Fig. 1. Specifically, we seek for an approximated
relation describing the multiport constitutive characteristic of
the driver for which the implicit form writes:

g

(
u(t), y(t), t,

d

dt
, . . . ,

dp

dtp

)
= 0, (1)

where g(·) is a generic nonlinear dynamic map, u(t) =
[vi(t), vo(t)] and y(t) = io(t).

A fully behavioral approach is followed, avoiding the need
of a dedicated test setup and cumbersome device control for
the observation of the transient voltage and current responses
required for model generation (i.e., for the estimation of the
parameters defining g).

Fig. 1. Typical interconnect structure with the main blocks and the relevant
input and output electrical variables of an IC driver.

III. SYSTEM IDENTIFICATION VIA KERNEL RIDGE
REGRESSION

Let us consider the problem of building a model of the
explicit dynamic characteristic of a generic non-linear multi-
port circuit element with input u(t) and output ŷ(t) of the
form [17], [18]:

ŷk = f(ŷk−1, . . . , ŷk−p,uk, . . . ,uk−p), (2)

where f is a generic nonlinear dynamic mapping, ŷ and u =
[u(1), . . . , u(n)]T are the estimated output and corresponding
input vector collecting the voltages and/or currents at the de-
vice ports with discrete time index k (e.g., ŷk = ŷ(kT ), being
T the assumed sampling period) at different time instants. The
value p denotes the model order.

The above model is usually referred to in the literature as
NOE (nonlinear output error) model and consists of a recursive
equation in the estimated output. Indeed, the model prediction
at a given time step depends on the predictions of the model
at previous p time steps. Data-driven modeling techniques and
machine learning approaches can be used to learn a NOE
model, such as the one in (2), starting from a set of time
samples of the input and output signals [17], [18].

Specifically, given a training set DNOE = {(xl, yl)}Ll=1+p

where the vector xl = [ul, . . . ,ul−p] collects the current

and past values of the discrete time input ul and yl is the
corresponding discrete time output signals the dynamic map
in (2) can be learnt via recurrent regression techniques, such
as the RNNs [8], [17], [18].

However, the NOE model is not fully compatible with the
feedforward structure used by conventional kernel regressions.
Indeed, even if a recurrent formulation of kernel regressions is
in principle feasible, the training of such model would required
to solve a non-convex problem, thus limiting the advantages
of such approaches with respect to RNNs (additional details
in this regards can be found in [17]–[20]).

A viable solution that facilitates the application of tra-
ditional kernel-based regressions in the context of system
identification is given by the nonlinear autoregressive with
exogenous input (NARX) model, which writes [17], [18]:

ŷk = f(yk−1, . . . , yk−p,uk, . . . ,uk−p), (3)

where the entries yk−1, . . . , yk−p and uk, . . . ,uk−p denote
the true output and the inputs at different time instants, and
ŷk is the estimated output at time k.

Different from the recursive model in (2), the NARX
model does not have any recursion in the variable yk,
since it uses as input the true output values yk−1, . . . , yk−p

available in the training set. Therefore, the NARX model
in (3) is a static model which can be suitably learnt via
conventional feedforward kernel regressions [17] by using
as training data DNARX = {(x̃l, yl)}Ll=1+p, where now
x̃l = [xl, yl−1, . . . , yl−p]

T .
The dynamic map f(·) can be learnt from the NARX model

in (3) via a conventional kernel ridge regression (KRR). The
resulting model can be evaluated as a recurrent model as:

ŷk =

L∑
l=1+p

αlK(x̃l, [xk, ŷk−1, . . . , ŷk−p]
T ), (4)

where {αl}Ll=1+p are the coefficients to be estimated during
the learning phase and K(·, ·) is a conventional scalar kernel
function.

The coefficients α = [α1+p, . . . , αL]
T can be suitably

estimated from the DNARX training set via the solution of
the following linear system [19], [21]:

α = (K+ λIL)
−1y, (5)

where K is a Gramian matrix such that [K]ij = K(x̃i, x̃j)
defined by evaluating the kernel function on each configuration
pairs belonging to the training input set and λ is a Tikhonov
regularizer. In this work a Gaussian RBF kernel is used and
its hyperparameter together with λ are estimated via a 3-
fold cross-validation. The RBF kernel is used instead of other
state-of-the-art kernel functions such as the polynomial kernel,
since it has shown superior performance in several realistic
complex regression problems (see as an example the results



in [22]). The effectiveness of alternative kernel functions will
be considered in future research.

It is important to remark that even if the training of the
NARX model is carried out by considering the static map
in (3), the resulting model obtained from the KRR in (4) is
evaluated as a recurrent model.

IV. RESULTS

The results in this section are aimed at verifying the
feasibility of the proposed approach, also stressing its overall
benefits in terms of model accuracy. The considered test case
is a plain CMOS driver composed of four cascaded stages
which has demonstrated to be representative for the typical
rich nonlinear dynamical behavior of this class of circuits.

Fig. 2. Test waveforms: transient responses of the example device driven
by a “010100” bit stream and loaded by an interconnect with Z0 = 50Ω
characteristic impedance and Td = 3 ns delay.

Figure 2 shows the output port voltage vo(t) and current
io(t) responses of the example driver for a typical distributed
load defined by a mismatched interconnect. The device is
driven by a “010100” bitstream forced by a trapezoidal input
signal vin(t). The sampled output port current response is
assumed as the reference sequence for model testing (i.e.,
validation).

Figure 3 shows, for the same logic activity “010100” of
the driver, the output port current and voltage responses
observed for three different loads. In the figure, the paired
voltage and current responses are labeled as set #1, #2 and
#3. Two lumped loads and one distributed interconnect with
characteristics different form the one considered for model
testing are considered.

A first experiment is carried out by generating a KRR-
based model built via the procedure outlined in Sec. III and by
considering one set of training waveforms only (i.e. set #1 in
this case). Figure 4 compares the reference output port current
waveform to either the static mapping or the recurrent response
obtained by the estimated KRR model, highlighting that a
qualitative signature of the current response is captured only.

Fig. 3. Training waveforms: transient responses of the example device
loaded by three different distributed or lumped loads different from the one
considered for validation. Set #1: transmission line with Z0 = 75Ω and
Td = 5 ns; set #2: shunt connection between a 50Ω resistor and a 10 pF
capacitor; set #3: 50Ω in series with the power supply battery

One single dynamical load appeared not sufficient to allow
the generalization of the KRR regression to obtain accurate
results. The positive aspect is the nearly overlapped responses
of the static mapping and the recurrent KRR prediction.

Fig. 4. Model validation (single training sequence): comparison between
the reference output current of the test set shown in Fig. 2 and the model
prediction obtained by both the static and the recurrent versions of the
proposed machine learning regression. The training responses labeled as set#1
in Fig. 3 are used for the model generation.

A second experiment is instead carried out by generating a
model with a procedure which uses all the three sets of device
responses of Fig. 3, yielding a major improvement on model
accuracy, as can be appreciated in the comparison of Fig. 5.
This additional test confirms the potential of the proposed
method in matching a very good accuracy of models. KRR
regressions allows to implement a simple modeling procedure.



Also, the time required by model estimation is limited and it
does not introduce critical practical aspects. The training time
on a MacBook Pro (M1, 2022) is on the order of dozens of
seconds (104 s for the latter test).

Fig. 5. Model validation (multiple training sequences): comparison between
the reference output current of the test set shown in Fig. 2 and the model
prediction obtained by both the static and the recurrent versions of the
proposed machine learning regression. All the three training responses in Fig.
3 are used for the model generation.

V. CONCLUSIONS & FUTURE WORK

This paper investigates the effectiveness of an alternative
approach for the modeling of IC buffers based on the KRR.
Specifically, the KRR is used to learn the static map pro-
vided by a NARX model approximating the actual nonlinear
dynamic characteristic of a digital IC driver. The regression
model is trained by considering the observations of voltages
and currents at the device ports for different load conditions
defined with the aim of exploring the possible operating
conditions of the device. The resulting model can be then
evaluated as a recurrent model. The overall model accuracy
has been assessed by considering a new load configuration
(i.e., different from the load used during the training phase)
by comparing the model predictions with the corresponding re-
sults obtained by SPICE. The results highlighted the excellent
accuracy of the proposed model. On the other hand, additional
research work has to be carried out to assess the effectiveness
of the presented modeling framework on different structures
(e.g., differential IC drivers and/or the inclusion of the power
supply effects), as well as the possibility of integrating the
resulting model in a SPICE-like solver.

REFERENCES

[1] I/O Buffer Information Specification, Ver. 7.2. Accessed: Dec. 12, 2023
[online]. Available: https://ibis.org/

[2] G. Signorini, C. Siviero, M. Telescu, I.S. Stievano “Present and future
of I/O-buffer behavioral macromodels,” IEEE Electromagnetic Compat-
ibility Magazine, vol. 5, no. 3, pp. 79–85, 2016.

[3] I.S. Stievano, I.A. Maio, F.G. Canavero, C. Siviero, “Reliable eye-
diagram analysis of data links via device macromodels,” IEEE Transac-
tions on Advanced Packaging, vol. 29, no. 1, pp. 31–38, 2006.

[4] I.S. Stievano, I.A. Maio and F.G. Canavero, “Mπlog, macromodeling via
parametric identification of logic gates,” IEEE Transactions on Advanced
Packaging, vol. 27, no. 1, pp. 15–23, Feb. 2004.

[5] T. Zhu, M.B. Steer and P.D. Franzon, “Accurate and Scalable IO Buffer
Macromodel Based on Surrogate Modeling,” IEEE Trans. Compon.
Packag. Manuf. Technol., vol. 1, no. 8, pp. 1240–1249, Aug. 2011.

[6] B. Mutnury, M. Swaminathan and J.P. Libous, “Macromodeling of non-
linear digital I/O drivers,” IEEE Transactions on Advanced Packaging,
vol. 29, no. 1, pp. 102–113, Feb. 2006.

[7] H. Yu and M. Swaminathan, “A Bit-Time-Dependent Model of I/O
Drivers for Overclocking Analysis,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 28, no. 7, pp. 1630–1637, 2020.

[8] H. Yu, T. Michalka, M. Larbi and M. Swaminathan, “Behavioral
Modeling of Tunable I/O Drivers With Preemphasis Including Power
Supply Noise,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 28, no. 1, pp. 233–242, Jan. 2020.

[9] W. Dghais, M. Souilem and M. Alam, “Mixed-Signal Overclocked
I/O Buffers Model Abstraction for Signal Integrity Assessment,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,
no. 3, pp. 691–699, March 2019.

[10] M. Souilem, N. Zgolli, T.R. Cunha, W. Dghais and H. Belgacem, “Signal
and Power Integrity IO Buffer Modeling Under Separate Power and
Ground Supply Voltage Variation of the Input and Output Stages,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31,
no. 6, pp. 874–886, June 2023.

[11] M. Souilem, J.N. Tripathi, W. Dghais and H. Belgacem, “An IBIS-like
Modelling for Power/Ground Noise Induced Jitter under Simultaneous
Switching Outputs (SSO),” 2019 IEEE 23rd Workshop on Signal and
Power Integrity (SPI), Chambéry, France, 2019, pp. 1–4.
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