Complexity and performance of Automotive System-on-Chips have exponentially grown in the last decade, also according to technology advancements. Unfortunately, this trend directly and profoundly impacts modern Electronic Design Automation tools, which must handle very large amounts of logic gates. The consequence is an exponential increase in computation times, potentially leading to significant production delays. In the context of Burn-In, to reduce the computing time, the stress specification is often relaxed due to the difficulty of grading extensive pattern sets, and it may result in the insurgence of unstressed circuit zones. As a matter of fact, current Electronic Design Automation software tools provide limited capabilities to effectively quantify stress effectiveness, investigate per-pattern set coverage loss, and compute layout-aware stress metrics. This article proposes a toolchain to overcome the limitations mentioned above. We propose a complete software flow to evaluate Burn-In stress patterns through standard toggle coverage and activity effectively. Together with these standard metrics, this article illustrates how to complement traditional measurement with layout-aware toggle coverage metrics. By exploiting parallel programming paradigms and machine learning algorithms, the proposed toolchain drastically reduces computation time for evaluating traditional stress metrics, and it offers new analysis metrics to test engineers conceiving the Burn-in stress patterns. In addition, the toolchain offers some commodities to superimpose the generated stress from different patterns and visualize it over the SoC layout through a heatmap, providing great benefits to test engineers in charge of composing Burn-In recipes. We validated our toolchain on two industrial devices from STMicroelectronics belonging to the SPC58 and SPC56 families, which include around 20 million and 2.7 million gates, respectively.
A Toolchain to Quantify Burn-In Stress Effectiveness on large Automotive System-on-Chips / Angione, Francesco; Appello, Davide; Bernardi, Paolo; Calabrese, Andrea; Quer, Stefano; SONZA REORDA, Matteo; Tancorre, Vincenzo; Ugioli, Roberto. - In: IEEE ACCESS. - ISSN 2169-3536. - 11:(2023), pp. 105655-105676. [10.1109/ACCESS.2023.3316511]
A Toolchain to Quantify Burn-In Stress Effectiveness on large Automotive System-on-Chips
Francesco Angione;Paolo Bernardi;Andrea Calabrese;Stefano Quer;Matteo Sonza Reorda;
2023
Abstract
Complexity and performance of Automotive System-on-Chips have exponentially grown in the last decade, also according to technology advancements. Unfortunately, this trend directly and profoundly impacts modern Electronic Design Automation tools, which must handle very large amounts of logic gates. The consequence is an exponential increase in computation times, potentially leading to significant production delays. In the context of Burn-In, to reduce the computing time, the stress specification is often relaxed due to the difficulty of grading extensive pattern sets, and it may result in the insurgence of unstressed circuit zones. As a matter of fact, current Electronic Design Automation software tools provide limited capabilities to effectively quantify stress effectiveness, investigate per-pattern set coverage loss, and compute layout-aware stress metrics. This article proposes a toolchain to overcome the limitations mentioned above. We propose a complete software flow to evaluate Burn-In stress patterns through standard toggle coverage and activity effectively. Together with these standard metrics, this article illustrates how to complement traditional measurement with layout-aware toggle coverage metrics. By exploiting parallel programming paradigms and machine learning algorithms, the proposed toolchain drastically reduces computation time for evaluating traditional stress metrics, and it offers new analysis metrics to test engineers conceiving the Burn-in stress patterns. In addition, the toolchain offers some commodities to superimpose the generated stress from different patterns and visualize it over the SoC layout through a heatmap, providing great benefits to test engineers in charge of composing Burn-In recipes. We validated our toolchain on two industrial devices from STMicroelectronics belonging to the SPC58 and SPC56 families, which include around 20 million and 2.7 million gates, respectively.File | Dimensione | Formato | |
---|---|---|---|
A_Toolchain_to_Quantify_Burn-In_Stress_Effectiveness_on_Large_Automotive_System-on-Chips.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
3.65 MB
Formato
Adobe PDF
|
3.65 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2982078