Deep Neural Networks (DNNs) have proven to give very good results for many complex tasks and applications, such as object recognition in images/videos and natural language processing. Some relevant applications of DNNs are defined by real-time safety-critical systems, which typically require the adoption of DNN accelerators that are usually implemented as systolic arrays. Assessing their reliability is not trivial and may depend on several factors such as the size of the array and the data precision.In this paper, we present a cross-layer framework for systolic array DNN accelerators described at RTL level allowing to inject faults at channel granularity for convolutional layers. The basic idea is to simulate the execution of the Channel Under Test (ChUT) at RTL level. Faulty outputs collected from the RTL simulation are then used at software level to complete the execution of the DNN and thus determine the impact of the injected faults at application level. Interestingly, the software execution is more than 100 times faster than the corresponding hardware simulation.
A Fault Injection Framework for AI Hardware Accelerators / Pappalardo, S; Ruospo, A; O'Connor, I; Deveautour, B; Sanchez, E; Bosio, A. - ELETTRONICO. - (2023), pp. 1-6. (Intervento presentato al convegno 2023 IEEE 24th Latin American Test Symposium (LATS) tenutosi a Veracruz, Mexico nel 21-24 March 2023) [10.1109/LATS58125.2023.10154505].
A Fault Injection Framework for AI Hardware Accelerators
Ruospo, A;Sanchez, E;
2023
Abstract
Deep Neural Networks (DNNs) have proven to give very good results for many complex tasks and applications, such as object recognition in images/videos and natural language processing. Some relevant applications of DNNs are defined by real-time safety-critical systems, which typically require the adoption of DNN accelerators that are usually implemented as systolic arrays. Assessing their reliability is not trivial and may depend on several factors such as the size of the array and the data precision.In this paper, we present a cross-layer framework for systolic array DNN accelerators described at RTL level allowing to inject faults at channel granularity for convolutional layers. The basic idea is to simulate the execution of the Channel Under Test (ChUT) at RTL level. Faulty outputs collected from the RTL simulation are then used at software level to complete the execution of the DNN and thus determine the impact of the injected faults at application level. Interestingly, the software execution is more than 100 times faster than the corresponding hardware simulation.File | Dimensione | Formato | |
---|---|---|---|
_LATS23__A_Fault_Injection_Framework_for_AI_Hardware_Accelerators.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
932.54 kB
Formato
Adobe PDF
|
932.54 kB | Adobe PDF | Visualizza/Apri |
A_Fault_Injection_Framework_for_AI_Hardware_Accelerators.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.9 MB
Formato
Adobe PDF
|
1.9 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2981738