Discrete Fracture Network (DFN) flow simulations are commonly used to determine the outflow in fractured media for critical applications. Here, we extend the formulation of spatial graph neural networks with a new architecture, called Graph-Informed Neural Network (GINN), to speed up the Uncertainty Quantification analyses for DFNs. We show that the GINN model allows better Monte Carlo estimates of the mean and standard deviation of the outflow of a test case DFN.
Predicting flux in Discrete Fracture Networks via Graph Informed Neural Networks / Berrone, Stefano; Della Santa, Francesco; Mastropietro, Antonio; Pieraccini, Sandra; Vaccarino, Francesco. - ELETTRONICO. - Machine Learning and the Physical Sciences:(2021). (Intervento presentato al convegno Workshop at the 35th Conference on Neural Information Processing Systems (NeurIPS) nel December 13, 2021).
Predicting flux in Discrete Fracture Networks via Graph Informed Neural Networks
Berrone, Stefano;Della Santa, Francesco;Mastropietro, Antonio;Pieraccini, Sandra;Vaccarino, Francesco
2021
Abstract
Discrete Fracture Network (DFN) flow simulations are commonly used to determine the outflow in fractured media for critical applications. Here, we extend the formulation of spatial graph neural networks with a new architecture, called Graph-Informed Neural Network (GINN), to speed up the Uncertainty Quantification analyses for DFNs. We show that the GINN model allows better Monte Carlo estimates of the mean and standard deviation of the outflow of a test case DFN.File | Dimensione | Formato | |
---|---|---|---|
NeurIPS_ML4PS_2021_87.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2973331