Approximate Computing (AxC) techniques allow trade-off accuracy for performance, energy, and area reduction gains. One of the applications suitable for using AxC techniques are the Spiking Neural Networks (SNNs). SNNs are the new frontier for artificial intelligence since they allow for a more reliable hardware design. Unfortunately, this design requires some area minimization strategies when the target hardware reaches the edge of computing. In this work, we first extract the computation flow of an SNN, then employ Interval Arithmetic (IA) to model the propagation of the approximation error. This enables a quick evaluation of the impact of approximation. Experimental results confirm the model’s adherence and the capability of reducing the exploration time.
Prediction of the Impact of Approximate Computing on Spiking Neural Networks via Interval Arithmetic / Saeedi, Sepide; Carpegna, Alessio; Savino, Alessandro; Di Carlo, Stefano. - ELETTRONICO. - (2022), pp. 1-6. (Intervento presentato al convegno 23rd IEEE Latin-American Test Symposium (LATS 2022) tenutosi a Virtual Event nel 05-08 September 2022) [10.1109/LATS57337.2022.9936999].
Prediction of the Impact of Approximate Computing on Spiking Neural Networks via Interval Arithmetic
Saeedi, Sepide;Carpegna, Alessio;Savino, Alessandro;Di Carlo, Stefano
2022
Abstract
Approximate Computing (AxC) techniques allow trade-off accuracy for performance, energy, and area reduction gains. One of the applications suitable for using AxC techniques are the Spiking Neural Networks (SNNs). SNNs are the new frontier for artificial intelligence since they allow for a more reliable hardware design. Unfortunately, this design requires some area minimization strategies when the target hardware reaches the edge of computing. In this work, we first extract the computation flow of an SNN, then employ Interval Arithmetic (IA) to model the propagation of the approximation error. This enables a quick evaluation of the impact of approximation. Experimental results confirm the model’s adherence and the capability of reducing the exploration time.File | Dimensione | Formato | |
---|---|---|---|
Paper___LATS22___IA_NN_Model.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
409.05 kB
Formato
Adobe PDF
|
409.05 kB | Adobe PDF | Visualizza/Apri |
Prediction_of_the_Impact_of_Approximate_Computing_on_Spiking_Neural_Networks_via_Interval_Arithmetic.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
498.93 kB
Formato
Adobe PDF
|
498.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2971542