Recently, the avenue of adaptable, soft robotic hands has opened simplified opportunities to grasp different items; however, the potential of soft end effectors (SEEs) is still largely unexplored, especially in human-robot interaction. In this paper, we propose, for the first time, a simple touch-based approach to endow a SEE with autonomous grasp sensory-motor primitives, in response to an item passed to the robot by a human (human-to-robot handover). We capitalize on human inspiration and minimalistic sensing, while hand adaptability is exploited to generalize grasp response to different objects. We consider the Pisa/IIT SoftHand (SH), an under-actuated soft anthropomorphic robotic hand, which is mounted on a robotic arm and equipped with Inertial Measurement Units (IMUs) on the fingertips. These sensors detect the accelerations arisen from contact with external items. In response to a contact, the hand pose and closure are planned for grasping, by executing arm motions with hand closure commands. We generate these motions from human wrist poses acquired from a human maneuvering the SH to grasp an object from a table. We obtained 86% of successful grasps, considering many objects passed to the SH in different manners. We also tested our techniques in preliminary experiments, where the robot moved to autonomously grasp objects from a surface. Results are positive and open interesting perspectives for soft robotic manipulation.
Touch-Based Grasp Primitives for Soft Hands: Applications to Human-to-Robot Handover Tasks and beyond / Bianchi, M.; Averta, G.; Battaglia, E.; Rosales, C.; Bonilla, M.; Tondo, A.; Poggiani, M.; Santaera, G.; Ciotti, S.; Catalano, M. G.; Bicchi, A.. - (2018), pp. 7794-7801. (Intervento presentato al convegno 2018 IEEE International Conference on Robotics and Automation, ICRA 2018 tenutosi a aus nel 2018) [10.1109/ICRA.2018.8463212].
Touch-Based Grasp Primitives for Soft Hands: Applications to Human-to-Robot Handover Tasks and beyond
Averta G.;
2018
Abstract
Recently, the avenue of adaptable, soft robotic hands has opened simplified opportunities to grasp different items; however, the potential of soft end effectors (SEEs) is still largely unexplored, especially in human-robot interaction. In this paper, we propose, for the first time, a simple touch-based approach to endow a SEE with autonomous grasp sensory-motor primitives, in response to an item passed to the robot by a human (human-to-robot handover). We capitalize on human inspiration and minimalistic sensing, while hand adaptability is exploited to generalize grasp response to different objects. We consider the Pisa/IIT SoftHand (SH), an under-actuated soft anthropomorphic robotic hand, which is mounted on a robotic arm and equipped with Inertial Measurement Units (IMUs) on the fingertips. These sensors detect the accelerations arisen from contact with external items. In response to a contact, the hand pose and closure are planned for grasping, by executing arm motions with hand closure commands. We generate these motions from human wrist poses acquired from a human maneuvering the SH to grasp an object from a table. We obtained 86% of successful grasps, considering many objects passed to the SH in different manners. We also tested our techniques in preliminary experiments, where the robot moved to autonomously grasp objects from a surface. Results are positive and open interesting perspectives for soft robotic manipulation.File | Dimensione | Formato | |
---|---|---|---|
Touch-Based_Grasp_Primitives_for_Soft_Hands_Applications_to_Human-to-Robot_Handover_Tasks_and_Beyond.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.13 MB
Formato
Adobe PDF
|
2.13 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
icra_2018.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
4.62 MB
Formato
Adobe PDF
|
4.62 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2970297