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Touch-Based Grasp Primitives for Soft Hands:
Applications to Human-to-Robot Handover Tasks and Beyond

Matteo Bianchi1,3, Giuseppe Averta1,2,3, Edoardo Battaglia1, Carlos Rosales1,
Manuel Bonilla1, Alessandro Tondo1, Mattia Poggiani1, Gaspare Santaera2,

Simone Ciotti1,2,3, Manuel G. Catalano1,2 and Antonio Bicchi1,2,3

Abstract— Recently, the avenue of adaptable, soft robotic
hands has opened simplified opportunities to grasp different
items; however, the potential of soft end effectors (SEEs) is still
largely unexplored, especially in human-robot interaction. In
this paper, we propose, for the first time, a simple touch-based
approach to endow a SEE with autonomous grasp sensory-
motor primitives, in response to an item passed to the robot by
a human (human-to-robot handover). We capitalize on human
inspiration and minimalistic sensing, while hand adaptability is
exploited to generalize grasp response to different objects.We
consider the Pisa/IIT SoftHand (SH), an under-actuated soft
anthropomorphic robotic hand, which is mounted on a robotic
arm and equipped with Inertial Measurement Units (IMUs)
on the fingertips. These sensors detect the accelerations arisen
from contact with external items. In response to a contact, the
hand pose and closure are planned for grasping, by executing
arm motions with hand closure commands. We generate these
motions from human wrist poses acquired from a human
maneuvering the SH to grasp an object from a table. We
obtained 86% of successful grasps, considering many objects
passed to the SH in different manners. We also tested our
techniques in preliminary experiments, where the robot moved
to autonomously grasp objects from a surface. Results are
positive and open interesting perspectives for soft robotic
manipulation.

I. INTRODUCTION

Human-robot (HR) handover represents a well-studied
topic in robotics, see e.g. [1], [2], [3], [4] ,which comes with
important challenges related to human-to-robot communica-
tion [5], human safety and acceptance [6], human intention
prediction [7], human-aware planning and execution [8], [9].
According to [4], HR handover consists of three main phases,
i.e. approach, passing, retraction. In this work we focus
on the passing phase, which corresponds to the physical
transfer of the object from human to robot. Here, the detec-
tion of the interaction is mandatory not only to guarantee
operator’s safety, but also to execute a successful robot
grasp response [10]. In biology, we refer to this behavior as
sensory-motor response [11]. Robotic sensing is commonly
achieved through the employment of visual and/or tactile
sensory systems, see e.g. [12], [13], [10], [14], which acquire
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the needed information on the object (and/or on human
hand gesture). Such an information can be then processed
to plan meaningful autonomous response [8]. Focusing on
the specific action of object grasping, classic approaches,
both analytic [15] and data-driven [16], have usually dealt
with grasp planning, grasp adaptation and force control.
For real-world grasps, which often come with a certain
level of uncertainty, visual and/or tactile sensory information
can be combined with learning and statistical techniques to
enable robots to autonomously manage novel and uncertain
situations, see e.g. [17], [18], [19], [20].

Recently, the introduction of under-actuated and soft
robotic hands has given new options respect to the traditional
way robotic grasping was usually planned and performed
with rigid end-effectors. Indeed, the embodied capability of
soft hands to comply and adapt to different objects and the
environment, together with the simplicity in control derived
from under-actuation – e.g. following the principled simplifi-
cation approach inspired by human hand synergies [11] – has
led to simple, adaptable yet robust systems. These systems
can mold around items and exploit physical environmental
constraints as opportunities to guide adaptive grasping of
different objects [21], [22]. Thanks to these characteristics, a
rough approximation of object geometry and robot hand pose
are enough to generate candidate successful grasps despite
external uncertainty [23], e.g. due to partial knowledge
through point-cloud data. In this case, final grasping pose
can be refined using low-cost infrared sensors [24].

The latter result further sustains the evidence that more
effective grasps can be obtained when information from
short-range or non-ranged sensors is used [25]. Under this
regard, touch/contact - based sensing allows for a more direct
and less problematic detection of important contact-related
aspects than artificial vision [26], as well as for a simplified
sensor-based implementation of reactive behavior [27], [25],
[24]. This aspect is particularly crucial in proximate human-
robot interaction (HRI), hence in handover tasks, where
a prompt robot reaction is a key factor for a successful
implementation of the sense-plan-act model [28].

To the best of authors’ knowledge, there are no solutions
that combine (i) the adaptability of soft robotic hands, (ii)
a minimalistic tactile sensing and (iii) a reactive robotic
behavior for robotic autonomous grasping in human to robot
object passing tasks. In this work, we propose a solution that,
for the first time, targets points (i), (ii), (iii). The goal is to
endow a soft robot hand/arm system with purely touch-based
grasp primitives. We refer to grasp primitives as coordinated



(a) Contact detection. (b) Primitive trigger. (c) Grasp.

Fig. 1: The leading idea of our approach. In blue the
sensorized fingertips, in red the contact.

hand closure and wrist movements of a soft manipulator,
triggered by touch-based sensor readings. Our leading idea
is to take inspiration from the human example, to implement
effective sensory-motor response on the robot side, having in
mind the trade-off between performance maximization and
resource usage minimization.

II. THE METHOD

Looking at biology, the simplest level of sensory-motor
integration consists of primitive reflex actions [29], i.e. nearly
instantaneous (and automatic) motor reactions in response
to a sensed event. Robotics often takes inspiration from
biology [11], and the implementation of primitive-based
control in robots is no exception. In this context the term
primitives (or, sometimes, reflexes [24]) is used to define
automated movements that are triggered in response to
certain sensory inputs experienced by the robot. In the last
years, primitive control has become somewhat popular in
different fields of robotics. In [30], predefined biologically
inspired postural primitives were used with a robotic arm to
imitate reflex-like withdrawal behaviors. Similar approaches
were used e.g. in [31], [32]. For what concerns grasp, the
specific definition of grasp primitives can vary slightly, but it
usually involves an automated control mechanism triggered
by certain conditions. In [33], authors implemented grasp
reflexes for robotic manipulation using leaky integrate-and-
fire neurons. The work in [34] developed specialized reflexes
for an anthropomorphic robotic hand based on force and
velocity control. Tactile-based grasp reactive behavior was
implemented e.g. in [27], [25], [24], although in these cases
a partial knowledge of object pose and location was needed.
To the best of our knowledge, our work is the first one where
a primitive-based approach is used with a soft manipulator,
relying only on contact based information as triggering input.

We use as end effector the Pisa/IIT SoftHand (SH),
an under-actuated anthropomorphic soft robotic hand [21],
which is mounted on a robotic arm and equipped with six
IMUs, five on the back of the fingertips and one on the back
of the hand. The fingertip sensors detect the accelerations
arisen from contact with external items, while the IMU
on the back of the hand is used to keep track of the
acceleration generated by the robot movement. In response to
a given contact, the hand pose and closure state are planned
for grasping, by executing arm motions with hand closure
commands, i.e. a primitive. Data used to generate these
motions are extracted from an experiment, where a human

user controlled the SH through a suitable interface to grasp a
tennis ball placed on a pole, considering a set of approaching
directions and contact locations at distal phalanxes. Since
the SH can adapt to grasp different items with various
geometrical properties [21], the crucial part for a successful
grasp is the correct determination of the pose of the hand
w.r.t. the target. To do this, we correlate the accelerations
with the user’s wrist pose to devise primitive grasp strategies
(see Fig. 1), which we evaluated in a simple human to robot
object passing task. More specifically, the SH was still and
placed over the wrist of a 7 DOF Kuka LWR 4+ arm, and
the user passed the object to it. During the experimental
evaluation, we considered many objects passed to the SH
along different contact directions. Our working hypothesis
was that despite the fact that the primitives were obtained
for only one object and limited number of contact conditions,
the hand should have been able to perform successful grasps
with novel situations, thanks to its intrinsic adaptability.

Our choice to use human-inspired motion primitives was
motivated by several studies in literature, which proposed
human-like robotic actions to improve robot-motion leg-
ibility [35], [4]. However, a comparison between differ-
ent planning methods (including anthropomorphic vs. non-
anthropomorphic) is currently out of the scope of this work.

Finally, it is worth noticing that we are aware that a
human-to-robot handover task would require a combination
of both feed-forward and feedback control components, the
latter is crucial to assess the correctness of task execution
and modify the action if needed. In this work, we decided to
focus only on the feed-forward part, since our goal was to
verify to which extent the combination of reactive primitives
and robotic hand softness enables to generalize to different
object grasps, under controlled conditions. Future works will
be devoted to include also a feedback part, which will allow
to take into account unforeseen events related to human
behavior and provide a control method to check for the
success of the robotic response and eventually to change
it, also to guarantee users safety. Further tests in more
unstructured environments are envisioned. The inclusion of
additional sensors is also under evaluation (e.g. increasing the
number of IMUs in use or adding force sensors to the SH,
still keeping in mind the trade-off between resource usage
and system performance.

We conducted additional experiments with some objects
placed on the table, while the robotic hand was controlled
to move and contact them at different locations. Although it
is well-known that humans tend to naturally adapt to robot
grasping capabilities in handover tasks [36], the objective of
these experiments was to preliminarily evaluate the success
of our approach, against possible helps from the human oper-
ator. This is important, especially for the interesting scenarios
that could be opened by the proposed method,colorblueThis
is important, especially for the interesting scenarios that
could be opened by the proposed method , e.g. for purely
tactile-based autonomous grasps of soft robotic hands.

In the following, we describe the experimental apparatus
for primitive extraction and the implementation on the robot
side.



Fig. 2: Experimental setup used for primitive identification.

The Human-Robot Interface and Motion Capture System

The SH was mounted on a human-robot interface [23]
(hereinafter, we will refer to it as the handle), which enabled
the user to control SH aperture through a lever. In the
primitive identification experiments we used the PhaseSpace
Motion Capture system to record the pose of the wrist of
the user. More specifically, the system recorded the x-y-
z coordinates of eight active infra-red markers (sampling
frequency of 480 Hz) attached to a bracelet in ABS fastened
on the handle immediately before the SH.

During the experiments, an off-the-shelf working glove
with padded rubber surface was placed on the SH to increase
contact compliance and grip. Five IMUs were glued on the
glove, in correspondence with the back of the distal phalanx
of each finger, roughly speaking where the “nails” of the SH
should be (Fig. 2). An additional IMU was placed on the back
of the hand to be able to compensate both for acceleration
caused by movement of the hand and for the contribution due
to the gravity. In other terms, the accelerometer mounted
close to the wrist of the hand (from now on it will be
called reference IMU) is used to reject the common mode
noise, as it follows. First, a calibration procedure computes
five rotation matrices that describe the orientations of the
fingertips IMUs w.r.t. the reference IMU, through a passive
complementary filter [37]. Second, during the task, for each
step the accelerations read from the fingertips IMUs are
expressed in the frame associated to the reference IMU, then
the common mode between reference and fingertips IMUs is
removed.

We used the InvenSense MPU-9250 IMU, endowed with
an on-board Digital Motion Processor (DMP) (capable to
process complex 9-axis Motion Fusion algorithms), but
relying only on the acceleration signals provided by the
embedded 3-axis accelerometer. Data communication was
realized via a custom made electronic board through RS485
with a frequency of 60 Hz (for more details on the platform
please refer to [38]).

III. GRASP PRIMITIVES

To build a database of primitives we performed first an
acquisition phase, where the poses of the wrist of the human
user maneuvering the SH were recorded as well as the
acceleration signals, and then an extraction phase, where
we defined the primitives w.r.t. the contact data provided
by IMU-measured accelerations.

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12
D13

I1

I2

I3
I4 I5 I6 I7 I8

P1

P2

P3 P4 P5 P6 P7
P8

Fig. 3: The regions of contact during the acquisition phase
and the 13 approaching directions Di, defined w.r.t. the
system of reference in figure. In this phase contacts occur
only on the sensorized Distal (D) phalanx (Highlighted in
red rectangles), while during the experiments Intermediate
(I) and Proximal (P) phalanges were also considered.

A. Data Acquisition
During the acquisition phase, we asked a human user to

wear the handle and to control the SH to grasp an object,
which was placed on the top of a pole, from different
approaching directions. The user was instructed to trigger
the grasp (re-)action as soon as he realized the contact.
To do it, he relied on both visual information and contact
vibration conveyed by the handle. Since the SH was endowed
with the sensing glove and the wrist bracelet, we were able
to acquire both the Detection (acceleration contact signals)
and the Motion (wrist motion alongside the hand closure
commands).

For what concerns the grasped object, we focused on a
single spherical object, i.e. a tennis ball, choosing to leverage
upon SH adaptability to generalize to different items (see
Section IV). The ball was placed on top of a pole and
attached to the center of a small table (50×40 cm) covered
with Velcro, at around 120 cm height. This enabled the
subject to freely approach the object from several directions:
in particular, we chose 13 directions as a good trade-
off between exhaustiveness and ease of implementation, as
reported in Fig. 3. We decided to not consider bottom-up
approaching direction, since we associated this to unwanted
and undesired contact with external objects in HRI (i. e. false
positives, see Section IV). At the same time, the fact that
the object was attached through Velcro at the table required
a firm grasp to remove it from the support.

For each approaching direction, the starting configuration
was about 20 cm from the object, along that direction. The
subject was asked to try to move at constant speed. In
addition to that, the subject was asked to initiate contact
with the object on the distal phalanges of the SH. The
approach and grasp depended on subject’s skills: for this
reason, preliminary training with the handle was imparted to
the subject, until motion with the SH, contact detection and
object grasp were as natural as possible.

The experiment protocol to gather relevant data was as
follows:

1) We randomly chose an approaching direction, hence a



starting configuration (SH palm down, parallel to the
ground).

2) A visual signal was sent to the subject to let him know
that the SH was in the starting configuration.

3) The subject moved the SH and initiated a grasp as soon
as the hand was in contact with the object.

4) To consider the grasp successful, the subject had to
detach the object from the table, lift it up and hold
it for 15 seconds. If this was not verified, he had to
repeat the action for the current approaching direction.

5) A visual signal was sent to the subject to let him know
that he was allowed to lower the SH and release the
object.

6) A 5 minutes rest followed, after which the cycle
started over from 1) for a different approaching di-
rection/starting configuration.

Acceleration data and wrist poses were recorded through
the IMUs, and PhaseSpace system, respectively, and synchro-
nized. Each approaching direction was presented three times
in the randomized sequence; we used the average values of
the sensed signals to perform the primitive extraction phase,
for an overall number of 13.

B. Primitive Identification

The goal was to build a map from IMU measured accel-
eration to wrist pose evolution (in particular, the final wrist
pose used for the grasp action), in order to devise grasping
strategies. To do that, we performed the following steps:

A) Common-mode rejection: using the IMU mounted on
the back of the hand;

B) Cropping: We identified the moment when the contact
occurred, and selected a time window where to perform
the acceleration processing. In particular, we chose to
identify the contact instant tc as the sample where the
first acceleration spike (greater than 0.5 g) occurred,
followed by a lower rebound. We heuristically iden-
tified this threshold since it guarantees a good signal
to noise ratio for contact detection. The window width
was 30 samples, starting 10 samples before the contact
time (Fig. 4);

C) Reshaping: Acceleration components in the consid-
ered time window were reshaped in a single vector, as
detailed at the bottom of Fig. 4;

D) Normalization: All acceleration values were normal-
ized by the maximum absolute value in the considered
time window.

At the end of this procedure we have a vector A of accelera-
tion scalar components in R3nW , where n = 5 is the number
of fingertip inertial sensors and W = 30 is the contact window
size.

To complete the primitives extraction, wrist poses need
to be associated to the previously considered acceleration
values. Wrist poses can in general be represented by six-
dimensional vectors, containing position and Roll-Pitch-Yaw
orientation; however, since the roll variation was significantly
greater than the other two during the grasp phase, as depicted
in Fig. 4, we chose to simplify the representation of the
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Fig. 4: The acceleration signals (top) and wrist position and
orientation signals (middle) were synchronized in time. Here
the term filtered refers to signals after the application of com-
mon mode rejection. A detail of the contact detection with
the corresponding time-window of width W = 30 samples
for primitive synthesis purposes is shown in the left-bottom
corner of the figure. The right-bottom corner shows a plot of
the acceleration signals normalized and reshaped in a vector
ordered per IMU and per acceleration component: in this
way we obtain a single signal of 30 ·3 ·5 = 450 samples that
can be used in the identification process.

problem and only consider Roll values for primitives extrac-
tion (corresponding to the wrist rotation around the forearm
axis). This result is not surprising, since during primitive
identification the human subject maneuvered the SH through
the handle, which constrained wrist movements mainly along
Roll direction. Future works will consider more complex
designs, e.g. using the SH in conjunction with an actuated
artificial wrist as in [39].

We are thus considering relative translations and Roll
values of the final wrist pose measured at the end-grasp time
teg. For a correct association, we need to select the samples
of interest: this was done by cropping data considering
a window that begins at the contact time tc and ends at
teg (see Fig. 4, middle), which we identified as the time
when a variation greater than 5 mm occurs on the vertical (z)
component of the human user wrist position. The final wrist
pose was then related to the corresponding accelerations in
A. At the end of this phase, we got a set of 13 final wrist
poses, each associated to acceleration profiles at tc detected
on the distal phalanges of robotic fingers (see Fig. 5). It can
be interesting to note that the primitives for contacts at thumb
are very similar each other: this is caused by the fact that



the primitive grasp action generates positive roll rotations,
independently from the direction of contact. However, for
the moment, we decided to maintain and implement all these
primitives.

IV. EXPERIMENTS

In this section we first describe how we implemented the
primitives for the robotic arm and then how we validated our
approach through experiments.

A. Implementation
In order to implement the 13 grasp primitives previously

described we developed a software library composed of two
main parts: Detection and Motion. As the names suggest,
the Detection implements the sensory system. Here, the raw
signals from the IMUs are continuously acquired and quickly
processed to infer information about the external environ-
ment (contact detection) and to trigger a desired reaction
(retrieved from the database of primitives), according to the
main steps described in the following lines. The Motion part
is in charge of the execution of the triggered reaction. During
the initialization phase, the robotic system was placed in a
starting posture where the proposed perception-action loop
was engaged at. After the execution of any primitive, the
system came back to the starting posture. The Motion and
the Detection play the server and the client, respectively. The
preemption policy was such that only one goal can be active
until the action was finished. In other words, it means that
once a primitive motion starts, the client becomes “deaf” to
any contact until the complete grasp primitive has finished
the execution, and the system has came back to the starting
posture.

The Detection logic selects the wrist pose, based on the
cross-correlation between the acceleration profile recorded
by the robot and the 13 acceleration profiles obtained from
human demonstration. Of note, each acceleration profile is
associated to a given wrist pose, i.e. motion primitive, as
described in Section III-B. More specifically, this procedure
selects the primitive for which the associated acceleration
profile presents the highest correlation with the profile ob-
served by the robot.The procedure is structured as follows:

1) A stream of IMUs data was continuously monitored
and common mode rejection applied.

2) Acceleration peaks (threshold 0.5 g) followed by a
rebound of the signal revealed the contact occurrences.

3) After a contact was heuristically detected, a time
window was selected for the acceleration data stream
where the measurements were reshaped and normal-
ized as done for the phase of extraction of primitives
(see the bottom right image in Fig. 4).

4) Cross correlation of the acceleration between the mea-
sured and 13 stored profiles over the time window, in
order to select the most similar associated wrist pose.

Steps 1-3 are analogous to the ones reported in Section III
for the extraction of grasp primitives.

The method described above is implemented for both the
first handover task and the second experiment presented in
this section, where the object is grasped from a table.

TABLE I: List of objects

(A) screwdriver (B) wrench (C) reel
(D) battery (AA) (E) pincers (F) plier
(G) hammer (H) hotglue gun (I) caliper
(J) pen (K) stapler (L) bottle
(M) torch (N) computer mouse (O) cell phone
(P) eraser (Q) lighter (R) table tennis ball
(S) human hand (T) mug (U) can
(V) teddy bear

B. Experiments with robotic arm: handover task

For the validation phase the SH was mounted on the Kuka
Light Weight Robot (LWR) 4+. The same sensorized glove
used for the primitives acquisition was put on the hand.

In the starting configuration, the robotic system was placed
with the SH palm facing down, similarly to what was done
by the human user in the previous phase. Then, a person,
different from the one who performed primitive identifica-
tion, handed over an object to the SH in a given direction
and the acceleration signals due to the contact triggered a
grasp primitive, with the directions as shown in Fig. 3. The
wrist position associated with the triggered primitive is fed as
setpoint to a standard motion planning algorithm [40], with
the SH closing to grasp the object after the wrist reaches
the target posture. The detection process had a duration of
about 200 ms, after which the grasp was completed in about
5 seconds.

A grasp was considered successful if the grip held for
15 s, and was robust to external disturbances applied by
the experimenter. More specifically, at the end of the grasp,
the experimenter hit the SH: in this phase, as soon as any
acceleration above 0.5 g was detected from any finger, the SH
opened releasing the object and the manipulator returned to
the starting configuration, waiting for another input from the
user (see Fig. 6 for an example. This procedure was repeated
three times per object (see Tab. I), for every direction and
target zone on the hand (Fig. 3), for a total of 1914 trials.
The total average success percentage was around 86%. As
previously mentioned in the introduction, the first mandatory
requirement for human-robot-interaction is user’s safety. To
meet this requirement, in our experiments, we considered
objects coming in contact with the hand from underneath or
from a side. In other terms, we do not want any primitive
to be executed for contacts from above the hand, that could
be risky for the user or affect task success, e.g. leading to
kinematic singularities of the robot arm. Of note, we do not
want to claim anything about the safety of our procedures
against unforeseen human movements: in these cases, the
inclusion of a feedback action is needed as discussed in
Section II and investigate in future works. To detect this kind
of contacts as false positives, we used the readings from the
gyroscope of IMUs to complete accelerometer data: when-
ever an acceleration peak was detected, if the z-axis reading
from the gyroscope was positive and above a threshold of
15 deg/s, then no primitive was implemented. We tested
the effectiveness of this approach by hitting the back of the
fingers in different zones 10 times, using a wrench: 88% of
false positive scontacts were correctly rejected. All the code
developed in this work is in ROS.



Fig. 5: Visual representation of grasp primitives synthesized from the experiments. Contact and sensing areas are indicated
with blue arrows, while the corresponding motion primitive are in fade.

Fig. 6: Snapshots of one of the experiments on human-to-robot handover. The contact occurred at the little finger.

It is worth pointing out that, respect to the grasp primitive
identification described in Section III, in this experiment we
used a considerably higher number of objects (22 against the
single tennis ball) and contact approaches (29 against 13).
That is, the proposed solution was able to generalize with
respect to those variables, also leveraging on the adaptability
of the SH.

TABLE II: Results

Object Successes Failures Success %

(A) 71 16 81.61%
(B) 84 3 96.55%
(C) 77 10 88.51%
(D) 78 9 89.66%
(E) 77 10 88.51%
(F) 80 7 91.95%
(G) 65 22 74.71%
(H) 78 9 89.66%
(I) 68 19 78.16%
(J) 77 10 88.51%
(K) 78 9 89.66%
(L) 59 28 67.82%
(M) 70 17 80.46%
(N) 75 12 86.21%
(O) 73 14 83.91%
(P) 79 8 90.8%
(Q) 73 14 83.91%
(R) 74 13 85.06%
(S) 82 5 94.25%
(T) 72 15 82.76%
(U) 74 13 85.06%
(V) 81 6 93.1%

(a) Results by object.

Direction Successes Failures Success %

D1 58 8 87.88%
D2 63 3 95.45%
D3 61 5 92.42%
D4 62 4 93.94%
D5 63 3 95.45%
D6 65 1 98.48%
D7 65 1 98.48%
D8 66 0 100%
D9 59 7 89.39%

D10 63 3 95.45%
D11 56 10 84.85%
D12 59 7 89.39%
D13 53 13 80.3%
I1 66 0 100%
I2 58 8 87.88%
I3 58 8 87.88%
I4 63 3 95.45%
I5 63 3 95.45%
I6 63 3 95.45%
I7 52 14 78.79%
I8 48 18 72.73%
P1 56 10 84.85%
P2 54 12 81.82%
P3 47 19 71.21%
P4 50 16 75.76%
P5 45 21 68.18%
P6 54 12 81.82%
P7 40 26 60.61%
P8 35 31 53.03%

(b) Results by direction.

We can have a better insight in the results by consid-
ering the number of successes by object (Table IIa) and
by direction (Table IIb). For what concerns the former,
the lowest success rate (around 68%) was obtained for the
bottle, which resulted difficult to grasp for contacts occurred
at the distal phalanx of the ring and little finger. Only
two other items had a success rate inferior to 80% (the
hammer with a 75% success percentage, and the caliper
with 78%), on a total of 22 objects. This can be ascribed
to the long shape and asymmetric inertial properties, which
also affected performance for the bottle that had some water
moving inside. In these cases, a feedback action would be
required to modify the grasp location on the object, thus
counterbalancing external torques due to long shape and
inertial properties of some of the objects. Conclusions that
can be drawn are that our method enables to generalize to
different objects passed to the hand, thus opening interesting
perspectives for human to robot handover, without any claim
of exhaustiveness. To properly affirm that our techniques can
be applied to real-world HRI tasks, the inclusion of feedback
controller and a thorough testing with a larger number of naif
human users are needed and will be performed as future
works.

C. Experiments with robotic hand: grasping an object from
a table

In the previous subsection, we have reported an implemen-
tation of the reactive grasp approach we are proposing in a
task where a human is handing over an object to the robot.
While the success rate in that experiment was fairly high,
since a human experimenter was actively participating in the
task it is not easy to discriminate between the contribution



Fig. 7: Snapshots of one experiment performed on a table. Contact was on the L/R zone with the hand following traj. 1.

of the human and the contribution of the robot to the task.
This is common in HRI, since humans naturally tend to adapt
to robot behavior [36]. To preliminarily evaluate the success
of our approach for robotic grasping, against possible helps
from the human operator, we also performed a second set
of experiments, where the object was autonomously grasped
from a table. We placed different objects extracted from
our list on a test surface, on which Velcro was attached
in order to fix the starting position and to avoid undesired
movements before and during the contact. This also required
a firm robotic grasp to remove objects from the support. The
robotic system was controlled to approach the object with
three different trajectories:

1) Vertical trajectory - approaching direction from the top
- contact with the bottom part of the phalanges;

2) Horizontal trajectory - approaching direction from the
side - contact with the lateral index/little;

3) Horizontal trajectory - approaching direction from the
front - contact with the frontal fingertips/thumb.

In Fig. 7 an example of reactive grasping using the
trajectory no.1 is reported. The arm is controlled in order to
cyclically follow the selected trajectory. Once the contact is
detected from the IMUs, the logic board compute the correct
grasp primitive using the approach reported in section IV-A.
We tested this approach using three objects with different
shapes, i.e. a tennis ball, a teddy bear and a water bottle.
We arbitrarily changed the contact point with the hand,
targeting different regions of the phalanxes and varying robot
motion velocity (from 11.5 to 17.5 cm/s). Without any claim
of exhaustiveness, since only a reduced set of conditions
was tested, we can affirm that the hand was able to grasp
the object from the table while approaching on it with the
internal phalanges, with the frontal side of the fingertips, with
the lateral side of the thumb and the little. In the future, a
more thorough validation will be performed. The aim of this
second type of experiments was to show a certain degree
of robustness of our techniques against possible helps from
the users, which is intrinsically unavoidable in HRI. At the
same time, the positive outcomes we have obtained, although
preliminary, open interesting perspectives for purely tactile
based autonomous grasps with soft end effectors.

V. DISCUSSIONS AND CONCLUSIONS

In this work, we have presented a minimalistic approach
to endow soft manipulators with human-inspired touch-based
sensory-motor grasp primitives in a simple human to robot
object passing task. These primitives were then implemented

to control the pose of the robotic wrist where the SH was
mounted on. We have demonstrated how the adaptability
of the SH enables to generalize these primitives for the
successful grasp of a wide number of objects, considering
a large set of object-to-hand approaching directions and
regions of contact on the robotic fingers. We also performed
preliminary experiments where the hand was controlled to
autonomously grasp objects from a table. The latter results
open fascinating perspectives for a new generation of soft
robotic manipulators with embedded sensory-motor capa-
bilities. By combining our feed-forward approach with a
feedback component, these manipulators could take advan-
tage from these capabilities, and purposefully exploit the
contact and the interaction with the environment to increase
their autonomy and extend their grasping capabilities, e.g. in
purely touch-based environment exploration.

Envisioned applications of the approach reported in this
paper can be also within the framework of shared-control,
e.g. in assistive robotics, where robot autonomy is used
to help user’s input for task accomplishment [41]. The
integration of user’s intention with the primitives described
in this work could increase the effectiveness of assistive-
rehabilitative systems for motor-impaired people. Indeed, our
solution represents a perception-action algorithm that can
autonomously generate goals (in our case, human-like object
grasps), without the usage of markers on the object, which
limit the applicability of shared-control systems only to a set
of labeled targets.

Future works will further investigate these methods for
a complete handover implementation, addressing all the
phases described in [4], together with an implementation of
a feedback-feedforward action which could increase safety
and generarization. Additional experiments will be suitably
designed to evaluate HR communication [6], as well as
the effectiveness and users’ acceptance of different motion
planners. It is important to note that our approach combines
the intrinsic adaptability of the SoftHand and tactile-triggered
wrist primitive control. To fully highlight the contribution of
the latter, future works will aim at providing a quantitative
comparison of grasping success/failure results between with
and without actively selecting grasp primitives. Finally, we
will continue to investigate with more quantitative results
the preliminary evidence that demonstrate the success of our
approach when the robot grasps the objects from a supporting
table by itself - hence without any active role of the human
operator.
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