In this work, we will give an overview of some of the most recent and successful applications of machine learning based inverse system designs in photonic systems. Then, we will focus on our recent research on the Raman amplifier inverse design. We will show how the machine learning framework is optimized to generate on-demand arbitrary Raman gain profiles in a controlled and fast way and how it can become a key feature for future optical communication systems.

Machine learning applied to inverse systems design / de Moura, Uiara C.; Da Ros, Francesco; Zibar, Darko; Brusin, Ann Margareth Rosa; Carena, Andrea. - ELETTRONICO. - (2022), pp. 1-3. (Intervento presentato al convegno 2022 International Conference on Optical Network Design and Modeling (ONDM) tenutosi a Warsaw (Poland) nel 16-19 May 2022) [10.23919/ONDM54585.2022.9782836].

Machine learning applied to inverse systems design

Brusin, Ann Margareth Rosa;Carena, Andrea
2022

Abstract

In this work, we will give an overview of some of the most recent and successful applications of machine learning based inverse system designs in photonic systems. Then, we will focus on our recent research on the Raman amplifier inverse design. We will show how the machine learning framework is optimized to generate on-demand arbitrary Raman gain profiles in a controlled and fast way and how it can become a key feature for future optical communication systems.
2022
978-3-903176-44-7
File in questo prodotto:
File Dimensione Formato  
ONDM2022_invited_submitted.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 622.99 kB
Formato Adobe PDF
622.99 kB Adobe PDF Visualizza/Apri
Machine_learning_applied_to_inverse_systems_design.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 286.81 kB
Formato Adobe PDF
286.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2967621