In this work, we will give an overview of some of the most recent and successful applications of machine learning based inverse system designs in photonic systems. Then, we will focus on our recent research on the Raman amplifier inverse design. We will show how the machine learning framework is optimized to generate on-demand arbitrary Raman gain profiles in a controlled and fast way and how it can become a key feature for future optical communication systems.
Machine learning applied to inverse systems design / de Moura, Uiara C.; Da Ros, Francesco; Zibar, Darko; Brusin, Ann Margareth Rosa; Carena, Andrea. - ELETTRONICO. - (2022), pp. 1-3. (Intervento presentato al convegno 2022 International Conference on Optical Network Design and Modeling (ONDM) tenutosi a Warsaw (Poland) nel 16-19 May 2022) [10.23919/ONDM54585.2022.9782836].
Machine learning applied to inverse systems design
Brusin, Ann Margareth Rosa;Carena, Andrea
2022
Abstract
In this work, we will give an overview of some of the most recent and successful applications of machine learning based inverse system designs in photonic systems. Then, we will focus on our recent research on the Raman amplifier inverse design. We will show how the machine learning framework is optimized to generate on-demand arbitrary Raman gain profiles in a controlled and fast way and how it can become a key feature for future optical communication systems.File | Dimensione | Formato | |
---|---|---|---|
ONDM2022_invited_submitted.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
622.99 kB
Formato
Adobe PDF
|
622.99 kB | Adobe PDF | Visualizza/Apri |
Machine_learning_applied_to_inverse_systems_design.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
286.81 kB
Formato
Adobe PDF
|
286.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2967621