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Abstract—In this work, we will give an overview of some of
the most recent and successful applications of machine learning-
based inverse system designs in photonic systems. Then, we will
focus on our recent research on the Raman amplifier inverse
design. We will show how the machine learning framework is
optimized to generate on-demand arbitrary Raman gain profiles
in a controlled and fast way and how it can become a key feature
for future optical communication systems.

Index Terms—inverse design, machine learning, photonic sys-
tems, optical amplifiers

I. INTRODUCTION

The recent renewed interest in machine learning (ML)
has been motivated by the massive amount of information
generated in our modern society and the recent evolution of
high efficient computers. Based on the idea that the underlying
features in a given data set can be learned, ML is used to model
complex functions to make decisions/predictions for unseen
data. These ML models have been successfully applied to
address some of society’s biggest and most complex problems
in different fields such as business [1], healthcare [2], and
astronomy [3]. Recently, there has been an increasing amount
of research applying the concepts of ML in the field of optical
communications. Some examples are quality of transmission
estimation [4], modulation format recognition [5], optical per-
formance monitoring [6], and most recently the inverse system
design of photonic structures [7]–[11] and devices [12]–[17].

The inverse system design consists in finding the optimum
set of design parameters that provides a desirable system
response. The traditional procedure to design optical devices
starts with an initial set of parameters (normally based on
the designer’s previous knowledge) and performs some pa-
rameter sweep around this initial condition to find the desired
response. This human-controlled design approach has two key
drawbacks: it is time-consuming/work-intensive and tends to
ignore solutions that could have better performance, but are
far from the initial guess. A way to speed up this process is
by using simplified models for the function f(·) that relates
the system parameter to its response. This can be done by
using a ML model to learn f(·). Such a model can go inside
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an iterative optimization routine such as gradient descent [22],
[23] or an evolutionary strategy [24] to search the optimum
set of parameters.

Another interesting way of applying ML to solve the
inverse system design is to learn the inverse function f(·)−1

relating the system response to the design parameters. Such
an “inverse” system model provides the direct retrieval of the
optimum set of parameters for a target response. This idea
has been applied for the inverse design of photonic integrated
structures [7]–[11], optical fibers [25], and optical ampli-
fiers [12]–[17]. In these works, an artificial neural network
(NN) model receives the target device performance and pro-
vides an optimized set of parameters more straightforwardly
when compared to the iterative optimization routines.

In this work, we review the recent progress in ML-based
approaches for the inverse design and optimization of photonic
structures and devices. Then, we will discuss our recently
proposed ML framework for the Raman amplifier inverse
design and how it is applied to provide on-demand gain
profiles in a controlled way.

II. ML-ENABLED INVERSE DESIGN APPROACHES

Applying ML to the inverse system design is not a recent
idea. Since the 90’s it has been used to design bipolar junction
transistors [18], [19], microwave filters [20], and microstrip
antennas [21]. These works explore the versatility of NNs in
learning f(·) (forward models) and f(·)−1 (inverse models).
They show how forward models are very useful to reduce the
design time by replacing computational-expensive and time-
consuming numerical simulation tools [19], [21]. They also
show how inverse models can reduce even more the design
time by instantaneously providing the physical structure given
a target response [18], [20].

One of the first works applying the NN-based inverse
models to solve the design problem in photonic systems shows
that, when applied to the design of complex nanophotonic
structures that require large training data, the NN has problems
to learn the inverse mapping due to one-to-many mappings [7].
This is a fundamental challenge in problems where the same
system response can be created by different designs. To solve
this issue, the authors propose a cascaded network structure
with an inverse NN model followed by a pre-trained forward
NN. In this auto-encoder-like structure, the input and output
are the target and predicted system performances, respectively.
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The design parameter is retrieved between the NN models.
During the inverse NN training, the one-to-many mapping
problem is eliminated by minimizing the errors between target
and predicted system responses. Once trained, the authors in
[7] used the cascaded NN to design dielectric multilayers films
(SiO2 and Si3O4) to achieve a certain transmission response.

Following works have also explored the NN-based inverse
model idea. In [8], the authors use a deep NN to predict
the geometry of plasmonic nanostructures based on far-field
measurements. This deep NN is then used in a sensing
application to find the nanostructure configuration that best
interacts with a given molecule. In [9], the authors propose an
adaptive normalized NN for the inverse design of graphene-
based metamaterials. Finally, the authors in [25] applied the
inverse NN model to effectively and instantaneously optimize
the structural parameters of ring-assisted few-mode fibers with
weak coupling optimization. These are just a few examples of
how ML is revolutionizing the design process in photonics by
avoiding designer guesses and time-consuming computation
for Maxwell’s equations. A comprehensive state-of-the-art of
ML applied to design photonic structures and devices can be
found in [10], [11].

III. RAMAN AMPLIFIER INVERSE DESIGN

The ability to shape the gain profile in a controlled way is
an exclusive feature of Raman amplifiers [27]. This is done
by properly adjusting the Raman pump powers to achieve the
target gain profile. However, due to the complex interactions
between pumps and signals, this adjustment is not a trivial
task and has been referred to as the Raman amplifier design.

The concept of inverse NN models was first applied to the
Raman amplifier design by [12]. This work evolved to reach
a comprehensive ML framework [26] and it is illustrated in
Fig. 1(a). The framework consists of two neural networks
NNfwd and NNinv , for the forward and inverse system
models, respectively. For the Raman amplifier case, NNfwd

learns the direct (forward) mapping for the Raman amplifier
relating the Raman pump parameters P to the Raman gain
profile response G, i.e., G = f(P). NNinv learns the inverse
mapping P = f−1(G). Here the function f(·) is a set
of non-linear ordinary differential equations describing the
Raman amplifier process. NNfwd and NNinv are trained
using supervised learning. Therefore, they need a data set with
uniformly distributed examples of P and their corresponding
G. A thorough description of the data set generation and the
NNs training can be found in [26].

The Raman amplifier design illustrated in Fig. 1(a) consists
in applying NNinv to provide the pump configuration P̃ given
a target gain profile GT at its input. As an optional step, P̃ can
be fine optimized. This fine design process applies NNfwd in
a gradient descent (GD) routine to minimize the mean squared
error (MSE) between predicted G̃ and target GT gain profiles.
This is possible because NNfwd is differentiable, which is not
the case for f(·). Moreover, the optimized pump parameters
Popt are obtained after a few iterations since the process
started from a close to optimum solution provided by P̃.

The robustness of the ML framework for different input
signal spectral profiles is covered by [29]. Its generalization
properties to different fiber types and lengths are experimen-
tally evaluated by [30], where a general model is proposed.
The proposed ML framework was also updated to consider
noise figure prediction during the design [28]. All these works
consider 4-pumps C-band distributed Raman amplifiers.

In this work, we will show the experimental validation for
the design of an ultra-wideband discrete Raman amplifier cov-
ering the S, C, and L bands [27]. The signal has 148 frequency
channels spaced by 100 GHz and covering 19.4 THz. Their
spectral allocation is shown on the top of Fig. 1(c). The gaps
in the spectrum are due to pump laser allocation overlap and
the lack of signal lasers on that region. In this example, the
Raman amplifier has 8 pumps equally spaced in frequency. The
gain is measured as the difference between the output optical
spectrum with the pump lasers turned on and off. Details about
the experimental setup, the neural networks training, and their
individual performance can be found in [27].

In the design stage, we consider three cases of target gain
profiles: flat, tilted, and arbitrary (illustrated in Fig. 1(a)).
Flat and tilted gain profiles range from 14 to 20 dB with
a 1 dB step (total of 7 cases). Tilted gain profiles con-
sider a -0.2-dB/THz slope coefficient. The arbitrary gains
are feasible gains, i.e. they are experimentally measured for
1025 uniformly distributed pump power configurations. The
experimental validation illustrated in Fig. 1(b) applies both
P̃ and Popt to the experimental Raman amplifier setup. The
measured gain GM is then compared to the target GT by
calculating the absolute error along the frequency channels
Error = |GT −GM |.

Fig. 1(c) and (d) show the absolute errors per frequency
for the flat and tilted gain profiles, respectively. To better
visualize the results, each box plot considers all channels in
a 600-GHz bandwidth (6 channel slots). These designs were
obtained by applying Popt. The following analysis excludes
the lowest frequency channel. Tilted and flat gain designs have
very similar performances, with a high design error for high
frequencies. This is because higher frequency channels have
contributions from a higher number of pump lasers due to the
pumps’ non-symmetric Raman gain spectrum. This makes the
design more complex in this region, especially for flat and
tilted gains [27].

Fig. 1(e) shows the absolute errors versus frequency over
1025 arbitrary gain profiles. These designs do not need the fine
design and are, therefore, obtained by applying just NNinv

outcome P̃. Since the error bars are too small, we plot the
mean error (Error) on a separate curve in the right y-axis
(also excluding the lowest frequency channel). In this case, the
absolute errors are almost constant along the frequencies. High
errors are again for the high-frequency channels, and may be
related to the complexity in learning f(·)−1 with more pump
contributions in high frequency.

The highest errors observed for the lowest frequency chan-
nel is due to instabilities observed after the amplification pro-
cess, which are consequence of the channel position isolated
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Fig. 1. (a) Full machine learning framework (i.e. inverse NNinv and forward NNfwd neural network models) for the design and gradient descent-based fine
design; (b) experimental design validation procedure applying the pump configurations from (fine) design to the experimental Raman amplifier, comparing the
corresponding measured gain (GM) to the target gain (GT), and the error (|GT −GM|) along the frequency for (c) flat, (d) tilted and (e) arbitrary gains.

on the edge of the spectra.
The ability of NN in learning the complex relations between

pump and signal as an inverse system model was also eval-
uated by other works considering different scenarios, such as
for hybrid amplifiers [13], [14] and few-mode Raman ampli-
fiers [15], [16]. Finally, in [17], they apply a convolutional
neural network to find the pump powers and wavelengths of a
distributed Raman amplifier required for a target signal power
evolution in both frequency and distance along the fiber.

IV. CONCLUSIONS

This work gave a brief overview of some recent works
applying machine learning to solve the inverse system design
problem in photonics. We focused on works applying neu-
ral networks to learn the inverse system function, mapping
the system response to design parameters. Such data-driven
models are highly accurate and can solve the design problem
almost instantaneously. This is a brand new field of research
that is totally transforming the way we engineer and with the
potential to have a high impact beyond optics and photonics.
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[3] Ž. Ivezić et al., “Statistics, Data Mining, and Machine Learning in
Astronomy: A Practical Python Guide for the Analysis of Survey Data”,
Princeton University Press, 2014.

[4] Y. Pointurier, “Machine learning techniques for quality of transmission
estimation in optical networks”, J. Opt. Commun. Netw. 13, B60 (2021).

[5] D. Wang et al., “Modulation Format Recognition and OSNR Estimation
Using CNN-Based Deep Learning,” in IEEE Phot. Tech. Lett. 29, 1667
(2017).

[6] J. Thrane et al., “Machine Learning Techniques for Optical Performance
Monitoring From Directly Detected PDM-QAM Signals,” J. Light.
Technol. 35, 868 (2017).

[7] D. Liu et al., “Training deep neural networks for the inverse design of
nanophotonic structures,” ACS Photon. 5, 1365 (2018).

[8] I. Malkiel et al. “Plasmonic nanostructure design and characterization
via deep learning”, Light Sci. Appl. 7, 60 (2018).

[9] Y. Chen et al., “Smart inverse design of graphene-based photonic
metamaterials by an adaptive artificial neural network,” Nanoscale 11,
9749 (2019).

[10] Y. Xu et al., “Interfacing photonics with artificial intelligence: an
innovative design strategy for photonic structures and devices based on
artificial neural networks,” Photon. Res. 9, B135 (2021).

[11] W. Ma et al. “Deep learning for the design of photonic structures”, Nat.
Photonics 15, 77 (2021).

[12] D. Zibar et al., ”Machine learning-based Raman amplifier design,” in
Proc. Opt. Fiber Commun. Conf., 2019, p. M1J.1.

[13] M. Ionescu, “Machine Learning for Ultrawide Bandwidth Amplifier
Configuration,” in Proc. 21th Int. Conf. Transp. Opt. Netw., 2019.

[14] X. Ye et al. “Experimental Prediction and Design of Ultra-Wideband Ra-
man Amplifiers Using Neural Networks,” in Proc. Opt. Fiber Commun.
Conf., 2020, p. W1K.3.

[15] Y. Chen et al. “Intelligent gain flattening of FMF Raman amplification
by machine learning based inverse design,” in Proc. Opt. Fiber Commun.
Conf., 2020, p. T4B.1.

[16] G. Marcon et al. “Model-aware deep learning method for Raman
amplification in few-mode fibers,” J. Light. Technol., 39, 1371 (2020).

[17] M. Soltani et al., ”Inverse design of a Raman amplifier in frequency and
distance domains using convolutional neural networks,” Opt. Lett. 46,
2650 (2021).

[18] R. Ferguson, D. J. Roulston, “Neural Networks for the Design and
Reverse Engineering of BJTs,” in Proc. Eur. Solid State Device Res.
Conf., 1996, pp. 969-972.

[19] M. M. Vai et al., “Reverse modeling of microwave circuits with
bidirectional neural network models,” in IEEE Trans. Microw. Theory
Techn. , 46, 1492, (1998).

[20] H. Kabir et al., “Neural Network Inverse Modeling and Applications to
Microwave Filter Design,” in IEEE Trans. Microw. Theory Techn. , 56
867 (2008).

[21] V. V. Thakare, P. Singhal, “Microstrip antenna design using artificial
neural networks”, Int. J. RF Microw. Comput.-Aided Eng. 20, 76 (2010).

[22] J. Zhou et al., “Robust, Compact, and Flexible Neural Model for a Fiber
Raman Amplifier,” J. Light. Technol., 24, 2362 (2006).

[23] J. Peurifoy et al., “Nanophotonic particle simulation and inverse design
using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).

[24] J. Chen and H. Jiang, “Optimal Design of Gain-Flattened Raman Fiber
Amplifiers Using a Hybrid Approach Combining Randomized Neural
Networks and Differential Evolution Algorithm,” IEEE Photonics J. 10,
7101915 (2018).

[25] Z. He, et al. “Machine learning aided inverse design for few-mode fiber
weak-coupling optimization,” Opt. Express 28, 21668 (2020).

[26] D. Zibar et al. “Inverse System Design Using Machine Learning: The
Raman Amplifier Case,” J. Light. Technol., 38, 736 (2020).

[27] U. C. de Moura et al. “Multi–Band Programmable Gain Raman Ampli-
fier,” J. Light. Technol., 39, 429 (2021).

[28] U. C. de Moura et al., “Simultaneous gain profile design and noise figure
prediction for Raman amplifiers using machine learning,” Opt. Lett. 46,
1157 (2021).

[29] U. C. de Moura et al., “Experimental Characterization of Raman Ampli-
fier Optimization Through Inverse System Design,” J. Light. Technol.,
39, 1162 (2021).

[30] U. C. de Moura et al., “Generalization Properties of Machine Learning-
based Raman Models,” in Proc. Opt. Fiber Commun. Conf., 2021, p.
Th1A.28.


