We address the task of cross-domain visual place recognition, where the goal is to geolocalize a given query image against a labeled gallery, in the case where the query and the gallery belong to different visual domains. To achieve this, we focus on building a domain robust deep network by leveraging over an attention mechanism combined with few-shot unsupervised domain adaptation techniques, where we use a small number of unlabeled target domain images to learn about the target distribution. With our method, we are able to outperform the current state of the art while using two orders of magnitude less target domain images. Finally we propose a new large-scale dataset for cross-domain visual place recognition, called SVOX. The PyTorch code is available at https://github.com/valeriopaolicelli/AdAGeo.

Adaptive-Attentive Geolocalization From Few Queries: A Hybrid Approach / Berton, GABRIELE MORENO; Paolicelli, Valerio; Masone, Carlo; Caputo, Barbara. - ELETTRONICO. - (2021), pp. 2917-2926. (Intervento presentato al convegno IEEE Winter Conference on Applications of Computer Vision (WACV) tenutosi a Hawaii (USA) nel 03/01/2021 - 08/01/2021) [10.1109/WACV48630.2021.00296].

Adaptive-Attentive Geolocalization From Few Queries: A Hybrid Approach

Berton Gabriele Moreno;Paolicelli Valerio;Masone Carlo;Caputo Barbara
2021

Abstract

We address the task of cross-domain visual place recognition, where the goal is to geolocalize a given query image against a labeled gallery, in the case where the query and the gallery belong to different visual domains. To achieve this, we focus on building a domain robust deep network by leveraging over an attention mechanism combined with few-shot unsupervised domain adaptation techniques, where we use a small number of unlabeled target domain images to learn about the target distribution. With our method, we are able to outperform the current state of the art while using two orders of magnitude less target domain images. Finally we propose a new large-scale dataset for cross-domain visual place recognition, called SVOX. The PyTorch code is available at https://github.com/valeriopaolicelli/AdAGeo.
2021
978-1-6654-0477-8
File in questo prodotto:
File Dimensione Formato  
AdAGeo_WACV21.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 4.65 MB
Formato Adobe PDF
4.65 MB Adobe PDF Visualizza/Apri
Adaptive-Attentive_Geolocalization_from_few_queries_a_hybrid_approach.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 5.19 MB
Formato Adobe PDF
5.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2947802