Spiking Neural Networks (SNNs), despite being energy-efficient when implemented on neuromorphic hardware and coupled with event-based Dynamic Vision Sensors (DVS), are vulnerable to security threats, such as adversarial attacks, i.e., small perturbations added to the input for inducing a misclassification. Toward this, we propose DVS-Attacks, a set of stealthy yet efficient adversarial attack methodologies targeted to perturb the event sequences that compose the input of the SNNs. First, we show that noise filters for DVS can be used as defense mechanisms against adversarial attacks. Afterwards, we implement several attacks and test them in the presence of two types of noise filters for DVS cameras. The experimental results show that the filters can only partially defend the SNNs against our proposed DVS-Attacks. Using the best settings for the noise filters, our proposed Mask Filter-Aware Dash Attack reduces the accuracy by more than 20% on the DVS-Gesture dataset and by more than 65% on the MNIST dataset, compared to the original clean frames. The source code of all the proposed DVS-Attacks and noise filters is released at https://github.com/albertomarchisio/DVS-Attacks.
DVS-Attacks: Adversarial Attacks on Dynamic Vision Sensors for Spiking Neural Networks / Marchisio, Alberto; Pira, Giacomo; Martina, Maurizio; Masera, Guido; Shafique, Muhammad. - ELETTRONICO. - (2021), pp. 1-9. (Intervento presentato al convegno International Joint Conference on Neural Networks (IJCNN) tenutosi a Shenzhen, China nel 18-22 luglio 2021) [10.1109/IJCNN52387.2021.9534364].
DVS-Attacks: Adversarial Attacks on Dynamic Vision Sensors for Spiking Neural Networks
Martina, Maurizio;Masera, Guido;
2021
Abstract
Spiking Neural Networks (SNNs), despite being energy-efficient when implemented on neuromorphic hardware and coupled with event-based Dynamic Vision Sensors (DVS), are vulnerable to security threats, such as adversarial attacks, i.e., small perturbations added to the input for inducing a misclassification. Toward this, we propose DVS-Attacks, a set of stealthy yet efficient adversarial attack methodologies targeted to perturb the event sequences that compose the input of the SNNs. First, we show that noise filters for DVS can be used as defense mechanisms against adversarial attacks. Afterwards, we implement several attacks and test them in the presence of two types of noise filters for DVS cameras. The experimental results show that the filters can only partially defend the SNNs against our proposed DVS-Attacks. Using the best settings for the noise filters, our proposed Mask Filter-Aware Dash Attack reduces the accuracy by more than 20% on the DVS-Gesture dataset and by more than 65% on the MNIST dataset, compared to the original clean frames. The source code of all the proposed DVS-Attacks and noise filters is released at https://github.com/albertomarchisio/DVS-Attacks.File | Dimensione | Formato | |
---|---|---|---|
DVS-Attacks_Adversarial_Attacks_on_Dynamic_Vision_Sensors_for_Spiking_Neural_Networks.pdf
accesso riservato
Descrizione: Versione editoriale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.68 MB
Formato
Adobe PDF
|
3.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2107.00415.pdf
accesso aperto
Descrizione: Versione autore
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.57 MB
Formato
Adobe PDF
|
1.57 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2930814