Nowadays, due to technology enhancement, faults are increasingly compromising all kinds of computing machines, from servers to embedded systems. Recent advances in ma- chine learning are opening new opportunities to achieve fault detection exploiting hardware metrics inspection, thus avoiding the use of heavy software techniques or product-specific errors reporting mechanisms. This paper investigates the capability of different deep learning models trained on data collected through simulation-based fault injection to generalize over different software applications.
Exploring Deep Learning for In-Field Fault Detection in Microprocessors / Dutto, Simone; Savino, Alessandro; Di Carlo, Stefano. - ELETTRONICO. - (2021), pp. 1456-1459. (Intervento presentato al convegno 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) tenutosi a Grenoble, FR nel 1-5 Feb. 2021) [10.23919/DATE51398.2021.9474120].
Exploring Deep Learning for In-Field Fault Detection in Microprocessors
Savino, Alessandro;Di Carlo, Stefano
2021
Abstract
Nowadays, due to technology enhancement, faults are increasingly compromising all kinds of computing machines, from servers to embedded systems. Recent advances in ma- chine learning are opening new opportunities to achieve fault detection exploiting hardware metrics inspection, thus avoiding the use of heavy software techniques or product-specific errors reporting mechanisms. This paper investigates the capability of different deep learning models trained on data collected through simulation-based fault injection to generalize over different software applications.File | Dimensione | Formato | |
---|---|---|---|
Exploring_Deep_Learning_for_In-Field_Fault_Detection_in_Microprocessors.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
209.96 kB
Formato
Adobe PDF
|
209.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
conference_101719.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
719.47 kB
Formato
Adobe PDF
|
719.47 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2918756