Nowadays, due to technology enhancement, faults are increasingly compromising all kinds of computing machines, from servers to embedded systems. Recent advances in ma- chine learning are opening new opportunities to achieve fault detection exploiting hardware metrics inspection, thus avoiding the use of heavy software techniques or product-specific errors reporting mechanisms. This paper investigates the capability of different deep learning models trained on data collected through simulation-based fault injection to generalize over different software applications.

Exploring Deep Learning for In-Field Fault Detection in Microprocessors / Dutto, Simone; Savino, Alessandro; Di Carlo, Stefano. - ELETTRONICO. - (2021), pp. 1456-1459. (Intervento presentato al convegno 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) tenutosi a Grenoble, FR nel 1-5 Feb. 2021) [10.23919/DATE51398.2021.9474120].

Exploring Deep Learning for In-Field Fault Detection in Microprocessors

Savino, Alessandro;Di Carlo, Stefano
2021

Abstract

Nowadays, due to technology enhancement, faults are increasingly compromising all kinds of computing machines, from servers to embedded systems. Recent advances in ma- chine learning are opening new opportunities to achieve fault detection exploiting hardware metrics inspection, thus avoiding the use of heavy software techniques or product-specific errors reporting mechanisms. This paper investigates the capability of different deep learning models trained on data collected through simulation-based fault injection to generalize over different software applications.
2021
978-3-9819263-5-4
File in questo prodotto:
File Dimensione Formato  
Exploring_Deep_Learning_for_In-Field_Fault_Detection_in_Microprocessors.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 209.96 kB
Formato Adobe PDF
209.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
conference_101719.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 719.47 kB
Formato Adobe PDF
719.47 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2918756