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Abstract—Nowadays, due to technology enhancement, faults
are increasingly compromising all kinds of computing machines,
from servers to embedded systems. Recent advances in ma-
chine learning are opening new opportunities to achieve fault
detection exploiting hardware metrics inspection, thus avoiding
the use of heavy software techniques or product-specific errors
reporting mechanisms. This paper investigates the capability of
different deep learning models trained on data collected through
simulation-based fault injection to generalize over different
software applications.

Index Terms—fault detection, deep learning, monitoring tool,
hardware metrics

I. INTRODUCTION

Rapid innovation in strategic industrial fields such as med-
ical, automotive, IoT, and HPC, is pushing for the adoption
of high-scaled multi-core processors (i.e., 10nm technology
nodes and below) in several domains [1]. This puts pressure
on systems’ designers and manufacturers to deliver improved
availability and reliability starting from the early design phases
[2]. Recent advances in machine learning and deep learning
may provide new powerful instruments to build advanced
fault detection systems supported by the development of fault
injection frameworks (e.g., [3; 4; 5; 6; 7]) able to collect huge
amount of simulated data.

Two applications of machine learning to support fault in-
jection were presented in [8] and [1]. The first paper aims
at reducing the number of injected faults, while the second
aims at correlating the results of the injection campaigns with
application/platform characteristics. In the fault detection do-
main, authors in [9] evaluated the impact of multi-bit memory
errors (both permanent and transient) in HPC applications
using machine learning models. The analysis is performed at
a high software level rather than exploiting low-level features
to perform hardware-level fault detection.

The main contribution of this paper is investigating how se-
lected deep learning models can detect permanent and transient
faults in microprocessors executing software applications and
how they are able to (i) generalize over several domains, thus
minimizing retraining for different applications, and (ii) work
with a set of low-level features that can be easily collected at
the microprocessor architectural level. To achieve this goal,
a full automated flow, from micro-architecture based fault
injection, used to collect data, to the training of the detection
model, was created and used to validate the approach using
MiBench applications [10] executed over a real Linux Kernel.

II. MACHINE LEARNING BASED FAULT DETECTION
FRAMEWORK

Figure 1 summarizes the full framework presented in this
paper. It covers three main challenges of every machine
learning based system: (a) data collection, (b) data analysis,
and (c) in-field monitoring.
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Fig. 1: Machine learning based fault detection framework.

A. Data collection

Fault injection is a powerful tool to investigate the behavior
of a system affected by hardware faults [11]. We exploit
the combination of two open source tools: gem5 [12] and
FIMSIM [5]. gem5 is a micro-architecture simulator able to
simulate and profile a full microprocessor architecture run-
ning the operating system (OS) and the application software.
FIMSIM is an add-on to gem5 that enables fault injection
of both permanent faults (stack-at-0, stack-at-1) and single
bit upsets (SBU) in the register file of the microprocessor.
Using these tools, several data-set entries can be collected by
profiling a large set of micro-architectural features at periodic
checkpoints, with each entry labeled according to the observed
fault effect as (i) benign, (ii) error, or (iii) crash.

To collect large amount of data, the full simulation envi-
ronment was packed into a Docker container [13] that can
be deployed and replicated to a Docker Swarm composed of
several distributed computing nodes, thus allowing extremely
parallelized injection experiments.

B. Data analysis

gem5 is able to profile about 600 micro-architectural fea-
tures. However, collected data are noisy and require cleaning.
Features containing non-numeric values were removed, drop-
ping columns containing not well-collected data. Moreover,



features with less than 1% variance, i.e., not containing
enough informative content, were removed as well. Overall,
this process removed half of the available features. Not all
features extracted by the simulator are already available and/or
can be monitored in real hardware, nonetheless, implementing
monitoring facilities for these metrics is feasible but expensive,
since it implies changing the hardware architecture. Therefore,
a model dependent feature selection phase able to identify
a minimum set of features that guarantees good learning
performance is required and describe later.

Once data have been collected, the best machine learning
model must be selected. Since the goal is to implement the
model at the hardware/OS level, it is important to look for
simple and fast models. Moreover, the considered data-set
has a domain issue to solve: different faults on different
binaries produce different features. A single model must be
able to either consider the difference or allow easy and
fast generalization. These reasons motivated us to consider
three models described in the following sections. A detailed
description of each model is available in [14].

1) Feed Forward Neural Networks with Transfer Learning:
Feed-Forward Neural Network is the simplest deep neural net-
work model [15]. This paper considers a model inspired by the
work proposed in [16]. The idea is simple yet powerful: train
the model on a data-set obtained by profiling an application for
N epochs and then specialize the model to work with another
data-set, associated to a different application, by training it
for N/5 epochs, thus reducing the training complexity when
new applications need to be included. This model requires a
feature selection to reduce the number of available features.
The solution exploited in this paper is to resort to a Random
Forest model [17] to calculate the feature importance factors,
implementing the procedure described in [18], usually referred
to as ”Gini importance” or ”mean decrease impurity”. This
approach avoids searching only for linear relationships, as with
PCA or correlation coefficients.

2) Domain Adversarial Neural Networks: Domain Adver-
sarial Neural Network is a model to cope with domain adapta-
tion problems, where data at train and test time are structurally
similar but distributed differently [19]. The approach consists
of training on a so-called source domain labeled data and
target domain unlabeled data. The resulting model should be
able to perform on the task independently of the domain,
fitting our problem in which we want to generalize the
model to unknown applications. Because this model requires
working with a high number of features, a DANN with 1D
Convolutional layer was evaluated with the total available 300
features.

3) Sparse Stacked Autoencoders with FFNN and TL: An
alternative to the first model (FFNN with TL) is using unsu-
pervised models to perform feature selection before submitting
information to the classifier. With unsupervised models data
do not have to be labeled, i.e., they can be collected with
simple profiling, without need of performing fault injection.
An Autoencoder is composed of an encoder (mapping the
input to a lower dimension), and a decoder (reconstructing

the output of the layer before back to its dimension). The
loss is the difference between the input and the reconstructed
input (also called reconstruction error). It is possible to have
multiple encoder layers followed by multiple decoders, this
model is called Sparse Stacked AutoEncoder (SS-AE). SS-AEs
have been used for fault detection to transform data before
entering the classifier [20]. The idea exploited in this paper
is to train the AE (encoder+decoder) to reconstruct the input
correctly, then, discarding the decoder and use the encoder as
a feature extractor for a fault classifier based on a FFNN with
TL, as before.

C. Monitoring infrastructure

Integrating the proposed machine learning models into a
real system requires two different infrastructures. First the
microprocessor must provide facilities to monitor the identified
features. This infrastructure is already available in modern
microprocessors through the Performance Monitoring Coun-
ters (PMC), which can be accessed at the OS level through
dedicated libraries such as PMCTrack [21]. Some features
identified by our models (e.g., cache-hit and cache-miss) are
already monitored in most commercial microprocessors. For
other more specific features the architecture of the micro-
processor requires modifications that are out of the scope
of this paper. Second, an in-field monitor implementing the
considered models is required. A preliminary version of this
monitor, implemented at the operating system level as a kernel
task, is currently under development. However, it is worth to
note that a software implementation of this monitor suffers
from the fact that the monitor itself could be affected by faults
in the hardware, requiring it to be secured.

III. EXPERIMENTS

A. Experimental setup

gem5 and FIMSIM were packaged inside a Docker con-
tainer based on Ubuntu 14.04.6 LTS image. All fault injections
were executed on an 32 Intel(R) Xeon(R) Silver 4110 CPU
@2.10GHz, 93GB RAM and 5.5T disk space. Each injection
required approximately 80 seconds producing 6.4MB of data.

Both permanent (either stuck-at-0 and stuck-at-1) and Single
Bit Upsets (SBU) were injected (10,000 injections per fault
type and per application) in the register file of the micro-
processor with gem5 configured using the AtomicSimpleCpu
model with 2-level cache with x86 ISA [22], running a
Vanilla Linux kernel. Permanent faults were injected from the
beginning of the binary execution in random selected bits,
and features collected from the last checkpoint. SBUs were
injected similarly, only making the injection time pseudo-
random. Four MiBench [10] applications were considered:
qsort, basicmath, bitcount, and ssearch.

For the training procedure the classical three-way split was
adopted: (i) Train set (50%) is used to train the model; (ii)
Validation set (20%) is used to fairly tune the model ; (iii)
Test set (30%) is the ultimate test to evaluate the performance
of the models on unseen data.



Domain adaptation is a key element of the performed
analysis. All considered Transfer Learning models were
trained/validated on a domain and trained/tested again on an-
other domain. Domain adaptation models were cross-domain
validated by training the model on two domains (source and
target), then validating on other domains and testing on the
target domain.

B. Results

Since different models have different characteristics, results
are first analyzed for each model and then compared across
models.

1) FFNN with TL: This model requires first to perform
feature selection (see Section II-B). After computing the
importance score for all features, 19 features with importance
significantly higher w.r.t. the full set were selected 1.

Let us now focus on the process to build the baseline model
to be used for transfer learning. In our case the baseline was
trained on the basicmath binary only.

First it is essential to make sure the network is learning
properly. When a model is learning correctly the loss on
train and validation set converge to the same values with
the shape of an elbow as reported in Figure 2 where LR
denotes the learning rate, i.e., the amount of weights updated
during training. This specific shape expresses that the loss of
the network is decreasing to a point of stability and the gap
between the train set and validation set means how much the
train set is representative of the validation set.

After ensuring that the model is set up to learn correctly,
it is time to fine-tune it. The parameters that affect the model
are: the LR, other two hyper-parameters β1 and β2 that are
usually not changed and set to 0.9 and 0.999, the learning
algorithm (i.e., Adam or SGD+Momentum), and the scheduler
(i.e., StepLR or CycleLR). The reader may refer to [14] for
further details on each parameter’s meaning. As reported in
Table I, among the three models with the best performance,
the one using Adam, StepLR and the lowest LR was selected.

At this point the best model, with the last 2 layers frozen,
is used as a baseline to perform the transfer learning task.
Table II shows that the model can work with different binaries,
sometimes even increasing the precision, with few epochs of
training after having built the baseline.

It is worth to note here that a high recall is not always a
good sign: if the model predicts always fault it would have

1(0) system.cpu.icache.ReadReq hits::total, (1) sys-
tem.cpu.itb walker cache.tags.occ blocks::cpu.itb.walker, (2) sys-
tem.iocache.WriteInvalidateReq hits::total, (3) system.cpu.icache.overall hits::cpu.inst,
(4) system.cpu.dcache.SoftPFReq misses::total, (5) sys-
tem.cpu.itb walker cache.ReadReq accesses::total, (6) sys-
tem.membus.pkt count system.cpu.dtb walker cache.mem side::system.mem ctrls.port,
(7) system.cpu.itb walker cache.overall misses::total, (8) sys-
tem.cpu.itb walker cache.ReadReq accesses::cpu.itb.walker,
(9) system.cpu.dtb walker cache.demand accesses::total, (10)
system.cpu.dtb walker cache.demand misses::cpu.dtb.walker,
(11) system.mem ctrls.num reads::cpu.inst, (12) sys-
tem.iobus.trans dist::ReadReq, (13) system.cpu.icache.ReadReq misses::cpu.inst,
(14) system.cpu.itb walker cache.tags.avg refs, (15) sys-
tem.cpu.itb walker cache.ReadReq hits::total, (16) sys-
tem.membus.pkt size system.cpu.icache.mem side::system.mem ctrls.port,
(17) system.cpu.icache.demand accesses::cpu.inst, (18) sys-
tem.cpu.icache.tags.age task id blocks 1024

Fig. 2: FFNN+TL: loss over epochs, with LR=0.001 and 50 epochs.

TABLE I: FFNN+TL: validation scores to select the baseline model

Optimizer Scheduler textbfEpochs F1 score
Adam: LR=0.1, Beta1=0.9, Beta2=0.999 StepLR: N=30 Epochs, gamma=0,1 50 0.8693
Adam: LR=0.01, Beta1=0.9, Beta2=0.999 StepLR: N=30 Epochs, gamma=0,1 50 0.8693
Adam: LR=0.001, Beta1=0.9, Beta2=0.999 StepLR: N=30 Epochs, gamma=0,1 50 0.8693
Adam: LR=0.0001, Beta1=0.9,
Beta2=0.999

StepLR: N=30 Epochs, gamma=0,1 50 0.8655

SGD+Momentum: LR=0.1, Beta1=0.9 CycleLR: LR f=LR, LR i=LR*0.1 50 0.8692
SGD+Momentum: LR=0.01, Beta1=0.9 CycleLR: LR f=LR, LR i=LR*0.1 50 0.8651
SGD+Momentum: LR=0.001, Beta1=0.9 CycleLR: LR f=LR, LR i=LR*0.1 50 0.8693
SGD+Momentum: LR=0.0001, Beta1=0.9 CycleLR: LR f=LR, LR i=LR*0.1 50 0.8195

recall equal to 1 which is clearly not enough. High precision
indeed is a good measure of how the model is able to spot the
faulty runs.

2) DANN: This model is trained based on a totally different
approach. The concept here is to have a model trained on two
different domains, one labeled and the other not, and see how
the model performs on both domains after the training. The
validation set will be on the other two domains.

The parameters to tune in this model are related to the
Adam optimizer, i.e., the LR, and the α parameter, which
represents how much reverse gradient is flowing into the
features’ extractor. Table III shows how these parameters were
optimized. It is important to remember that the model is not
trained on domains in the validation set.

Having selected the best hyper-parameters, the obtained
model can be tested using as target all domains and see how it
performs. As can be noted in Table IV, the model is not able
to generalize from unlabeled data.

3) SS-AE with FFNN and TL: In this case, a SS-AE is used
as alternative feature selection process. The SS-AE is trained
using MSE and L1 sparsity using only non-faulty runs. The
two hyper-parameters to tune are the LR and the α L1 sparsity
coefficient (see Table V).

The encoder with the best model from Table V is then
trained on the whole (faulty and non-faulty) data-set on a
single domain. This model is then used as a baseline to
compare performance on other domains before and after some
epochs of training on them.

It is interesting to notice in the first column of Table VI that
this model has the best precision on unseen domains.



TABLE II: FFNN+TL: performance on test set after 10 epochs of TL

Binary Precision: baseline Precision: after Recall: baseline Recall: after
basicmath 1.00 / 0.74 /
qsort 0.38 1.00 (+0.62) 1.00 0.82(-0.18)
search 0.46 0.82 (+0.36) 1.00 0.33(-0.67)
bitcount 1.00 1.00(+0.0) 0.73 0.74(+0.01)

TABLE III: DNN: F1 score on validation set

LR/ALPHA 0.1 0.01 0.001
0.01 0.59 0.75 0.59
0.001 0.59 0.62 0.59
0.0001 0.59 0.76 0.75

4) Comparison: Due to the limited space, all results dis-
cussed in this section are related to stuck-at-0 fault data-
sets. However, comparable performance have been obtained
considering stuck-at-1 and SBU.

To summarize, as reported in Figure 3, based on the avail-
able experiments, the best performing model is the FFNN with
TL for each domain. Not only it reaches the best performances
on each domain, but it is also the simplest and it works with
19 features. The small features selection is crucial considering
the idea of implementing an in-field monitor architecture.
However, it is very interesting to notice the precision of the SS-
AE architecture before transfer learning. This could underline
the ability of the model of generalizing for many domains.
However, further investigation in this direction are required.
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Fig. 3: Test set precision scores on different binaries from different models before and
after the training on the specific domain. Basicmath is used to build the baseline.

IV. CONCLUSIONS

This paper presented a broad analysis of how deep learning
models can be used to build a hardware fault detection frame-
work in microprocessor based systems. The main ideas that
guided the analysis were: working with hardware-level metrics
that could be monitored in a microprocessor, and working
with models able to be generalized and transferred to monitor
several applications. Overall, by testing three different models,
we showed that FFNN with TL are a potential candidate for
the proposed problem.
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