In recent years, the increasing interest in stochastic model predictive control (SMPC) schemes has highlighted the limitation arising from their inherent computational demand, which has restricted their applicability to slow-dynamics and high-performing systems. To reduce the computational burden, in this paper we extend the probabilistic scaling approach to obtain a low-complexity inner approximation of chance-constrained sets. This approach provides probabilistic guarantees at a lower computational cost than other schemes for which the sample complexity depends on the design space dimension. To design candidate simple approximating sets, which approximate the shape of the probabilistic set, we introduce two possibilities: i) fixed-complexity polytopes, and ii) ell_{p-norm based sets. Once the candidate approximating set is obtained, it is scaled around its center so to enforce the expected probabilistic guarantees. The resulting scaled set is then exploited to enforce constraints in the classical SMPC framework. The computational gain obtained with respect to the scenario approach is demonstrated via simulations, where the objective is the control of a fixed-wing UAV performing a crop-monitoring mission over a sloped vineyard.
Computationally efficient stochastic MPC: A probabilistic scaling approach / Mammarella, M.; Alamo, T.; Dabbene, F.; Lorenzen, M.. - ELETTRONICO. - (2020), pp. 25-30. (Intervento presentato al convegno 4th IEEE Conference on Control Technology and Applications, CCTA 2020 tenutosi a Montreal, Canada nel 2020) [10.1109/CCTA41146.2020.9206383].
Computationally efficient stochastic MPC: A probabilistic scaling approach
Mammarella M.;Dabbene F.;
2020
Abstract
In recent years, the increasing interest in stochastic model predictive control (SMPC) schemes has highlighted the limitation arising from their inherent computational demand, which has restricted their applicability to slow-dynamics and high-performing systems. To reduce the computational burden, in this paper we extend the probabilistic scaling approach to obtain a low-complexity inner approximation of chance-constrained sets. This approach provides probabilistic guarantees at a lower computational cost than other schemes for which the sample complexity depends on the design space dimension. To design candidate simple approximating sets, which approximate the shape of the probabilistic set, we introduce two possibilities: i) fixed-complexity polytopes, and ii) ell_{p-norm based sets. Once the candidate approximating set is obtained, it is scaled around its center so to enforce the expected probabilistic guarantees. The resulting scaled set is then exploited to enforce constraints in the classical SMPC framework. The computational gain obtained with respect to the scenario approach is demonstrated via simulations, where the objective is the control of a fixed-wing UAV performing a crop-monitoring mission over a sloped vineyard.File | Dimensione | Formato | |
---|---|---|---|
CCTA2020.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
CCTA2020.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2907169