In this paper we propose a scheme for evaluating the 6-D interaction integrals appearing in volume integral equation solved with the Method of Moments and tetrahedral elements. We treat as a whole the double volume integral, applying the divergence theorem first on the source domain and then on the test domain. With the proper variable transformation and reordering, the 6-D integrals are expressed as two radial integrals plus four linear integrals over the source and observation domain planes.
Reducing the Dimensionality of 6-D MoM Integrals Applying Twice the Divergence Theorem / RIVERO CAMPOS, FRANCISCO JAVIER; Vipiana, F.; Wilton, D. R.; Johnson, W. A.. - ELETTRONICO. - (2020), pp. 1-3. (Intervento presentato al convegno 14th European Conference on Antennas and Propagation, EuCAP 2020 tenutosi a Copenhagen, Denmark nel 15-20 March 2020) [10.23919/EuCAP48036.2020.9135447].
Reducing the Dimensionality of 6-D MoM Integrals Applying Twice the Divergence Theorem
FRANCISCO JAVIER RIVERO CAMPOS;Vipiana F.;
2020
Abstract
In this paper we propose a scheme for evaluating the 6-D interaction integrals appearing in volume integral equation solved with the Method of Moments and tetrahedral elements. We treat as a whole the double volume integral, applying the divergence theorem first on the source domain and then on the test domain. With the proper variable transformation and reordering, the 6-D integrals are expressed as two radial integrals plus four linear integrals over the source and observation domain planes.File | Dimensione | Formato | |
---|---|---|---|
09135447.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
317.57 kB
Formato
Adobe PDF
|
317.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1570603426_javi_REV.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
305.78 kB
Formato
Adobe PDF
|
305.78 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2876976