In this paper we propose a scheme for evaluating the 6-D interaction integrals appearing in volume integral equation solved with the Method of Moments and tetrahedral elements. We treat as a whole the double volume integral, applying the divergence theorem first on the source domain and then on the test domain. With the proper variable transformation and reordering, the 6-D integrals are expressed as two radial integrals plus four linear integrals over the source and observation domain planes.

Reducing the Dimensionality of 6-D MoM Integrals Applying Twice the Divergence Theorem / RIVERO CAMPOS, FRANCISCO JAVIER; Vipiana, F.; Wilton, D. R.; Johnson, W. A.. - ELETTRONICO. - (2020), pp. 1-3. (Intervento presentato al convegno 14th European Conference on Antennas and Propagation, EuCAP 2020 tenutosi a Copenhagen, Denmark nel 15-20 March 2020) [10.23919/EuCAP48036.2020.9135447].

Reducing the Dimensionality of 6-D MoM Integrals Applying Twice the Divergence Theorem

FRANCISCO JAVIER RIVERO CAMPOS;Vipiana F.;
2020

Abstract

In this paper we propose a scheme for evaluating the 6-D interaction integrals appearing in volume integral equation solved with the Method of Moments and tetrahedral elements. We treat as a whole the double volume integral, applying the divergence theorem first on the source domain and then on the test domain. With the proper variable transformation and reordering, the 6-D integrals are expressed as two radial integrals plus four linear integrals over the source and observation domain planes.
2020
978-88-31299-00-8
File in questo prodotto:
File Dimensione Formato  
09135447.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 317.57 kB
Formato Adobe PDF
317.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1570603426_javi_REV.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 305.78 kB
Formato Adobe PDF
305.78 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2876976