In this paper we propose a scheme for evaluating the 6-D interaction integrals appearing in volume integral equation solved with the Method of Moments and tetrahedral elements. We treat as a whole the double volume integral, applying the divergence theorem first on the source domain and then on the test domain. With the proper variable transformation and reordering, the 6-D integrals are expressed as two radial integrals plus four linear integrals over the source and observation domain planes.
Reducing the Dimensionality of 6-D MoM Integrals Applying Twice the Divergence Theorem / Rivero Campos, Francisco Javier; Vipiana, F.; Wilton, D. R.; Johnson, W. A.. - ELETTRONICO. - (2020), pp. 1-3. ((Intervento presentato al convegno 14th European Conference on Antennas and Propagation, EuCAP 2020 tenutosi a Copenhagen, Denmark nel 15-20 March 2020 [10.23919/EuCAP48036.2020.9135447].
Titolo: | Reducing the Dimensionality of 6-D MoM Integrals Applying Twice the Divergence Theorem | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Abstract: | In this paper we propose a scheme for evaluating the 6-D interaction integrals appearing in volum...e integral equation solved with the Method of Moments and tetrahedral elements. We treat as a whole the double volume integral, applying the divergence theorem first on the source domain and then on the test domain. With the proper variable transformation and reordering, the 6-D integrals are expressed as two radial integrals plus four linear integrals over the source and observation domain planes. | |
ISBN: | 978-88-31299-00-8 | |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
09135447.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
1570603426_javi_REV.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2876976