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Abstract—In this paper we propose a scheme for evaluating the
6-D interaction integrals appearing in volume integral equation
solved with the Method of Moments and tetrahedral elements.
We treat as a whole the double volume integral, applying the
divergence theorem first on the source domain and then on
the test domain. With the proper variable transformation and
reordering, the 6-D integrals are expressed as two radial integrals
plus four linear integrals over the source and observation domain
planes.

Index Terms—integral equations, moment methods, numerical
analysis, singular integrals.

I. INTRODUCTION

Volume integral equation (VIE) techniques are essential in
helping us to obtain accurate solutions of electromagnetic
(EM) problems using the method of moments (MoM). VIE
are particularly useful in cases involving inhomogeneous ma-
terials. However, the difficult-to-compute the singular potential
integrals present in MoM system matrices has hampered the
rigorous solution of radiation and scattering problems needed
to develop numerical codes able to adequately model and
predict the EM behavior of analyzed problems. Recently
Bleszynski et al. presented a method allowing an analytical
conversion of expressions for matrix elements of the tensor
and vector Green functions from 6-D volumetric to 4-D surface
integrals with nonsingular integrands [1].

In this paper we extend the applicability of the method de-
veloped for 4-D reaction integrals in [2], [3] to the evaluation
of double volumetric integrals on source and test domains
of the 6-D reaction integrals. The proposed method for 4-
D reaction integrals consists in the double application of
the divergence theorem, reducing the 4-D integrals to two
radial integrals plus two contour integrals over the source and
observation domain boundaries. Analogously, for the volumet-
ric case the theorem is applied twice reducing the double
volume integrals to two radial integrals plus two surface
integrals over the source and observation domain boundaries.
The divergence theorem is applied directly in the physical
domains for both the source and observation point integrals.
In this sense, the scheme is quite general, i.e., is not limited to
well-shaped elements nor to ad-hoc treatments of self-, edge-,
or vertex-adjacent geometries. Unlike the surface case, in the

volumetric case, points in the source or test element plane do
not need to be imaged in the plane of the other element.

Additionally, we introduce a parameterization that will
allow us to reduce the two 4-D remaining integral to four
1-D integrals that can be evaluated analytically.

II. FORMULATION

The aim of this paper is to perform an accurate and efficient
evaluation of 6-D integrals of the form

IV,V ′ =

∫
V

∫
V ′
F (r, r′) dV ′dV, (1)

where F (r, r′) typically takes the form

F (r, r′) = t(r)g(r, r′)b(r′), (2)

being t(r) either a scalar or a vector component of a test
basis function, and b(r′) a similarly defined (source) basis
function, g(r, r′) is either a scalar, or a vector or dyadic
Green’s function, and V and V ′ are the volumetric domains
of tetrahedral test and source basis functions, respectively.

Fig. 1. The orientation of a pair of tetrahedral elements in space and some
geometry definitions.

Applying the twice the divergence theorem as described in
[4], [5], the integral (1) can be written as

∮
S′

∮
S

(n̂·R̂)(n̂′ ·R̂′)
RSS′

2

∫ RSS′

0

∫ R

0

F (r, r′)R′
2
dR′dRdSdS′, (3)



where r′S′ is a point on the boundary S′ of V ′, and n̂′

is the external normal to the boundary surface of the tetra-
hedral volume, and r′ = r + R′R̂′, R̂′ = (r′ − r)/R′,
0 ≤ R′ ≤ R ≡ | r− r′S′ |, R′ = |r′ − r|. S is the boundary
of V , n̂ is the outward pointing normal to S, r = r′S′ +RR̂,
R̂ = −R̂′ = (rS − rS′)/RSS′ , 0 ≤ R ≤ RSS′ , RSS′ =
|rS − r′S′ | , and rS is a point on S. All these definitions
can be easily seen in Fig. 1. The interchange of integration
order is permitted by the independence of the observation and
source coordinate variables and their associated domains. The
resulting representation has features in common with those
of [6], with two inner radial integrals and two outer integrals
over source and test element surfaces. The radial integrals can
be performed in closed form for both the dynamic and static
forms of the free space Greens function G

(
|r− r′|−1

)
and

∇G
(
|r− r′|−1

)
, with or without polynomial vector bases.

Fig. 2. Geometry definitions for integrating over a line segment pair.

To analyze the two outer surface integrals, we apply variable
transformations for both surfaces. If we consider

F(r, r′) =
(n̂·R̂)(n̂′ ·R̂′)

RSS′
2

∫ RSS′

0

∫ R

0

F (r, r′)R′
2
dR′dR , (4)

the contribution to the boundary integral (3) of a single face
pair, ∆S and ∆S′, can be written as∫
∆S′

∫
∆S

F(r, r′)dS dS′=

∫
z

∫
ρ

∫
z′

∫
ρ′
F(z, ρ, z′, ρ′)dρ′dz′dρdz,

(5)

where the surfaces ∆S and ∆S′ are parameterized using the
intersection line of these two surfaces, ẑ is directed along the
line of intersection, and the vectors ρ̂ and ρ̂′ are orthogonal to
the intersection line and the normals to the planes that contain
the surfaces S and S′ respectively, as seen in Fig. 2. Due
to the independence of the observation and source coordinate

variables and their associated domains, we can reorder the
integral (5) as∫
∆S′

∫
∆S

F(r, r′)dS dS′=

∫
z

∫
z′

∫
ρ

∫
ρ′
F(z, ρ, z′, ρ′)dρ′dρdz′dz.

(6)

To further smooth the integral we apply a double variable
transformation for ρ and ρ′ as

u =
√

1− cosβ · ρ+ ρ′√
2
, v =

√
1 + cosβ · ρ− ρ

′
√

2
, (7)

where β is the angle between the two planes containing the
observation and source surface integration domains. In order
to help us implement some further transformations to further
smooth integrands of (6), we consider now that the inner
function of the radial integral (4) is constant (i.e., the static
kernel, F (r, r′) = 1/R). Using these variable transformations
and considering the static kernel we can write the two integrals
in ρ and ρ′ as∫

ρ

∫
ρ′
F(z, ρ, z′, ρ′)dρ′dρ =∫

ρ

∫
ρ′

(n̂·R̂)(n̂′ ·R̂′)
RSS′

2

∫ RSS′

0

∫ R

0

R′dR′dR , dρ′dρ =(
1 + cosβ

2

)(∫
v

∫
u

u2

R
dudv−

∫
v

∫
u

v2

R
dudv

)
dz′dz,

(8)

that can be integrated analytically. The distance R simplifies
to

R =
√
u2 + v2 + ∆z2 (9)

where ∆z = z − z′. The above analysis allows us to identify
transformations that accelerate the numerical integration of the
paired surface integrals.

III. PRELIMINARY NUMERICAL RESULTS

In order to analyze the accuracy of the proposed scheme
for evaluating the 6-D reaction integral we examine the static
potential in the Method of Moments discretization of the Elec-
tric Field Integral Equation (EFIE) analyzing the convergence
behavior of the integral (6). We consider two tetrahedra with a
common vertex, as shown in Fig. 3 (inset). Only the two outer
integrals, over z and z′, are calculated numerically. The other
integrals are evaluated analytically. A Gauss-Legendre (GL)
quadrature scheme is compared to a reference result obtained
using the GL scheme with the highest number of points we
have available for this schema (150 points).

In Fig. 3, the convergence of the integral over z and z′ is
investigated. Fig. 3 shows the number of correct significant
digits obtained increasing the number of sample points for
these linear integrals. As can be seen, the method can reach
machine precision accuracy increasing the number of points.



Fig. 3. Near-field convergence of surface integrals. Inset: Orientation of a
pair of tetrahedral elements in space.

IV. CONCLUSION

The proposed scheme is based on two applications of the
divergence theorem with an appropriate integration reordering
and a variable transformation. For tetrahedral elements, the
6-D integrals are expressed as two radial integrals plus four
linear integrals over source and observation face pairs. The
method is numerically validated for static kernels arising in
the EFIE and similar formulations.

The next step in this research activity will be to examine the
possibility of using other transformations to further smooth the
resulting integrands and hence accelerate their convergence.
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