Additive manufacturing (AM) processes allow producing the complex components in a layerwise fashion. The complexity includes the design of lighter and stronger components by using lattice structures that can be quickly realized through AM technologies. However, the mechanical behaviour of lattice structures is not completely known, especially in the post-treated state. Thus, this work aims to explore the effect of post-treatment on the compressive strength of specimens with lattice structures. The samples are produced using Ti-6Al-4V powder processed by Electron Beam Melting (EBM). The outcomes of this work confirm the correlation between the heat treatment and final mechanical properties.
Ti-6Al-4V lattice structures produced by EBM: Heat treatment and mechanical properties / Galati, M.; Saboori, A.; Biamino, S.; Calignano, F.; Lombardi, M.; Marchiandi, G.; Minetola, P.; Fino, P.; Iuliano, L.. - 88:(2020), pp. 411-416. (Intervento presentato al convegno 13th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME 2019 tenutosi a ita nel 2019) [10.1016/j.procir.2020.05.071].
Ti-6Al-4V lattice structures produced by EBM: Heat treatment and mechanical properties
Galati M.;Saboori A.;Biamino S.;Calignano F.;Lombardi M.;Marchiandi G.;Minetola P.;Fino P.;Iuliano L.
2020
Abstract
Additive manufacturing (AM) processes allow producing the complex components in a layerwise fashion. The complexity includes the design of lighter and stronger components by using lattice structures that can be quickly realized through AM technologies. However, the mechanical behaviour of lattice structures is not completely known, especially in the post-treated state. Thus, this work aims to explore the effect of post-treatment on the compressive strength of specimens with lattice structures. The samples are produced using Ti-6Al-4V powder processed by Electron Beam Melting (EBM). The outcomes of this work confirm the correlation between the heat treatment and final mechanical properties.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2212827120303905-main.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2851127