Chaotic maps represent an effective method for generating random-like sequences, that combines the benefits of relying on simple, causal models with good unpredictability. Regrettably such positive features are counterbalanced by the fact that statistics of true-implemented chaotic maps are generally strongly dependent on implementation errors and external perturbations. Here we study the effect of an external, additive, map-independent noise perturbation in the map model, and present a technique to guarantee, for a quite large class of maps, independence of the first-order statistics of the noise features.
Noise robustness condition for chaotic maps with piecewise constant invariant density / Pareschi, F.; Setti, G.; Rovatti, R.. - STAMPA. - 4:(2004), pp. V-681-V-684. (Intervento presentato al convegno 2004 IEEE International Symposium on Cirquits and Systems - Proceedings tenutosi a Vancouver, BC, can nel May 23-26, 2004) [10.1109/ISCAS.2004.1329095].
Noise robustness condition for chaotic maps with piecewise constant invariant density
Pareschi F.;Setti G.;
2004
Abstract
Chaotic maps represent an effective method for generating random-like sequences, that combines the benefits of relying on simple, causal models with good unpredictability. Regrettably such positive features are counterbalanced by the fact that statistics of true-implemented chaotic maps are generally strongly dependent on implementation errors and external perturbations. Here we study the effect of an external, additive, map-independent noise perturbation in the map model, and present a technique to guarantee, for a quite large class of maps, independence of the first-order statistics of the noise features.File | Dimensione | Formato | |
---|---|---|---|
0400681.pdf
non disponibili
Descrizione: Editorial Version
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
361.89 kB
Formato
Adobe PDF
|
361.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ISCAS2004-robustness.pdf
accesso aperto
Descrizione: Author version of the Paper
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
336.11 kB
Formato
Adobe PDF
|
336.11 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2850179