Due to the huge amount of available omic data, classifying samples according to various omics is a complex process. One of the most common approaches consists of creating a classifier for each omic and subsequently making a consensus among the classifiers that assign to each sample the most voted class among the outputs on the individual omics. However, this approach does not consider the confidence in the prediction ignoring that biological information coming from a certain omic may be more reliable than others. Therefore, it is here proposed a method consisting of a tree-based multi-layer perceptron (MLP), which estimates the class-membership probabilities for classification. In this way, it is not only possible to give relevance to all the omics, but also to label as Unknown those samples for which the classifier is uncertain in its prediction. The method was applied to a dataset composed of 909 kidney cancer samples for which these three omics were available: gene expression (mRNA), microRNA expression (miRNA), and methylation profiles (meth) data. The method is valid also for other tissues and on other omics (e.g. proteomics, copy number alterations data, single nucleotide polymorphism data). The accuracy and weighted average f1-score of the model are both higher than 95%. This tool can therefore be particularly useful in clinical practice, allowing physicians to focus on the most interesting and challenging samples.

Multi-omics classification on kidney samples exploiting uncertainty-aware models / Lovino, Marta; Bontempo, Gianpaolo; Cirrincione, Giansalvo; Ficarra, Elisa. - ELETTRONICO. - 12464:(2020), pp. 32-42. (Intervento presentato al convegno International Conference on Intelligent Computing (ICIC2020) tenutosi a Bari (Online) nel Oct 10-11th 2020) [10.1007/978-3-030-60802-6_4].

Multi-omics classification on kidney samples exploiting uncertainty-aware models

Marta Lovino;Giansalvo Cirrincione;Elisa Ficarra
2020

Abstract

Due to the huge amount of available omic data, classifying samples according to various omics is a complex process. One of the most common approaches consists of creating a classifier for each omic and subsequently making a consensus among the classifiers that assign to each sample the most voted class among the outputs on the individual omics. However, this approach does not consider the confidence in the prediction ignoring that biological information coming from a certain omic may be more reliable than others. Therefore, it is here proposed a method consisting of a tree-based multi-layer perceptron (MLP), which estimates the class-membership probabilities for classification. In this way, it is not only possible to give relevance to all the omics, but also to label as Unknown those samples for which the classifier is uncertain in its prediction. The method was applied to a dataset composed of 909 kidney cancer samples for which these three omics were available: gene expression (mRNA), microRNA expression (miRNA), and methylation profiles (meth) data. The method is valid also for other tissues and on other omics (e.g. proteomics, copy number alterations data, single nucleotide polymorphism data). The accuracy and weighted average f1-score of the model are both higher than 95%. This tool can therefore be particularly useful in clinical practice, allowing physicians to focus on the most interesting and challenging samples.
File in questo prodotto:
File Dimensione Formato  
Multi_omics_classification_on_kidney_samplesexploiting_uncertainty_aware_models_short_version.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 512.13 kB
Formato Adobe PDF
512.13 kB Adobe PDF Visualizza/Apri
Lovino2020_Chapter_Multi-omicsClassificationOnKid.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2846922