A fully synthesizable ADC architecture is proposed for low-end current sensing applications. Being based on standard cells and designed with a fully-automated flow, the proposed ADC allows very low area, digital-like scaling across CMOS technology generations, technology and design portability, minimal design effort, and immersed-in logic design (i.e., low integration effort), compared to traditional analog-intensive designs. In addition, it allows direct current readout without requiring a transresistance stage. Testchip measurements show a 5-nA to 1-μA input range, 6.7-bit ENOB and 2.2-kS/s sample rate, at 940-nW power and 4, 580-μm2 area. To the best of the authors' knowledge, this testchip is the first demonstration of a fully-synthesizable input-current ADC. Along with the analysis of the specific limitations of the presented demonstration, this work aims to pave the way for a new class of current-input ADCs that can be designed and integrated with logic within hours, and occupy a silicon area in the order of 10kgates.
Fully-synthesizable current-input ADCs for ultra-low area and minimal design effort / Aiello, O.; Crovetti, P.; Sharma, A.; Alioto, M.. - ELETTRONICO. - (2019), pp. 715-718. (Intervento presentato al convegno 26th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2019 tenutosi a ita nel 2019) [10.1109/ICECS46596.2019.8964789].
Fully-synthesizable current-input ADCs for ultra-low area and minimal design effort
Aiello O.;Crovetti P.;
2019
Abstract
A fully synthesizable ADC architecture is proposed for low-end current sensing applications. Being based on standard cells and designed with a fully-automated flow, the proposed ADC allows very low area, digital-like scaling across CMOS technology generations, technology and design portability, minimal design effort, and immersed-in logic design (i.e., low integration effort), compared to traditional analog-intensive designs. In addition, it allows direct current readout without requiring a transresistance stage. Testchip measurements show a 5-nA to 1-μA input range, 6.7-bit ENOB and 2.2-kS/s sample rate, at 940-nW power and 4, 580-μm2 area. To the best of the authors' knowledge, this testchip is the first demonstration of a fully-synthesizable input-current ADC. Along with the analysis of the specific limitations of the presented demonstration, this work aims to pave the way for a new class of current-input ADCs that can be designed and integrated with logic within hours, and occupy a silicon area in the order of 10kgates.File | Dimensione | Formato | |
---|---|---|---|
PID6174479.pdf
accesso aperto
Descrizione: Post-print non editoriale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri |
Crovetti-Fully-synthesizable-pdf.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2816536