Multivariate exploratory data analysis allows revealing patterns and extracting information from complex multivariate data sets. However, highly complex data may not show evident groupings or trends in the principal component space, e.g. because the variation of the variables are not grouped but rather continuous. In these cases, classical exploratory methods may not provide satisfactory results when the aim is to find distinct groupings in the data. To enhance information extraction in such situations, we propose a novel approach inspired by the concept of combining weak classifiers, but in the unsupervised context. The approach is based on the fusion of several adjacency matrices obtained by different distance measures on data from different analytical platforms. This paper is intended to present and discuss the potential of the approach through a benchmark data set of beer samples. The beer data were acquired using three spectroscopic techniques: Visible, near-Infrared and Nuclear Magnetic Resonance. The results of fusing the three data sets via the proposed approach are compared with those from the single data blocks (Visible, NIR and NMR) and from a standard mid-level data fusion methodology. It is shown that, with the suggested approach, groupings related to beer style and other features are efficiently recovered, and generally more evident.
Fused Adjacency Matrices to enhance information extraction: the beer benchmark / Cavallini, Nicola; Savorani, Francesco; Bro, Rasmus; Cocchi, Marina. - In: ANALYTICA CHIMICA ACTA. - ISSN 0003-2670. - ELETTRONICO. - 1061:(2019), pp. 70-83. [10.1016/j.aca.2019.02.023]
Fused Adjacency Matrices to enhance information extraction: the beer benchmark
Nicola Cavallini;Francesco Savorani;
2019
Abstract
Multivariate exploratory data analysis allows revealing patterns and extracting information from complex multivariate data sets. However, highly complex data may not show evident groupings or trends in the principal component space, e.g. because the variation of the variables are not grouped but rather continuous. In these cases, classical exploratory methods may not provide satisfactory results when the aim is to find distinct groupings in the data. To enhance information extraction in such situations, we propose a novel approach inspired by the concept of combining weak classifiers, but in the unsupervised context. The approach is based on the fusion of several adjacency matrices obtained by different distance measures on data from different analytical platforms. This paper is intended to present and discuss the potential of the approach through a benchmark data set of beer samples. The beer data were acquired using three spectroscopic techniques: Visible, near-Infrared and Nuclear Magnetic Resonance. The results of fusing the three data sets via the proposed approach are compared with those from the single data blocks (Visible, NIR and NMR) and from a standard mid-level data fusion methodology. It is shown that, with the suggested approach, groupings related to beer style and other features are efficiently recovered, and generally more evident.File | Dimensione | Formato | |
---|---|---|---|
S0003267019301977.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.32 MB
Formato
Adobe PDF
|
3.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Accepted manuscript.pdf
Open Access dal 13/07/2020
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
16.61 MB
Formato
Adobe PDF
|
16.61 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2815371