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Abstract

Multivariate exploratory data analysis allows rdirega patterns and extracting information from
complex multivariate data sets. However, highly ptex data may not show evident groupings or
trends in the principal component space, e.g. ksecthe variation of the variables are not grouped
but rather continuous. In these cases, classiqabeatory methods may not provide satisfactory
results when the aim is to find distinct groupimngshe data.

To enhance information extraction in such situatjome propose a novel approach inspired by the
concept of combining weak classifiers, but in timsupervised context. The approach is based on
the fusion of several adjacency matrices obtaingdlifferent distance measures on data from
different analytical platforms. This paper is inded to present and discuss the potential of the
approach through a benchmark data set of beer saniphe beer data were acquired using three
spectroscopic techniques: Visible, near-Infrared ldoclear Magnetic Resonance.

The results of fusing the three data sets via thpgsed approach are compared with those from the
single data blocks (Visible, NIR and NMR) and frarstandard mid-level data fusion methodology.
It is shown that, with the suggested approach, grms related to beer style and other features are

efficiently recovered, and generally more evident.

Keywords

Data fusion, Adjacency Matrix, Clustering, Datauabzation, Spectroscopy, Beer

Abbreviations
AM Adjacency Matrix
MCR Multivariate Curve Resolution

OPTICS Ordering Points to Identify the ClusteririguSture
PC Principal Component

PCA Principal Component Analysis
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RD Reachability Distance

RP Reachability Plot
SOM Kohonen’s Self-Organizing Map
Vis Visible

1. Introduction

Exploratory multivariate data analysis (EMDA, [Xdjfers very powerful tools for looking into
complex data. Using EMDA it is possible, for exampb reveal underlying structures and discover
groups of similar samples and visualizing suchgoagt in an accessible and simple way.

Principal Component Analysis (PCA, [1-3]) is prolyathe most common EMDA approach,
together with some variants (Maximum Likelihood P@#, Projection Pursuit PCA [5,6]) but
other linear methods such as Independent Compaxralysis (ICA, [7,8]) and Multidimensional
Scaling (MDS, [1,9]) are also quite popular. Non-linear mapping methidds Kohonen’s Self-
Organizing Maps (SOMs, [10,11]) are considered dempntary to methods like PCA [12],
because of their ability to account for non-lingdrenomena. All these techniques are called
“projection” methods, since they are based on ptinjg the original high-dimensional data to a
space of lower dimensions, which makes it easieanddlel, plot and visualize the data. Another,
different way of recovering structures and groupssamples from data is represented by the
clustering methods [13,14]. Dissimilarity (or siamity) is at the core of clustering, and it is afte
assessed using a distance measure, based on wkedpel/grouping criteria are defined.

Despite the large variety of EMDA methods availalitere are still cases in which it is difficult to
obtain satisfactory results. Highly complex dataymat show simple groupings and/or trends in the
principal component space and may be so complaxnibianal visualizations are only shedding
limited light on the underlying characteristics.

In this perspective, we propose what we define Based Adjacency Matrix approach. The overall

idea of the approach is to combine multiple “wealdrses” of information that when combined will



68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

yield more discriminatory information. This “combition” concept comes from the field of
supervised learning, and more specifically from hods like Random Forest [15] or Weak
Learning Algorithm [16], in which multiple weak dsifiers are combined to make stronger class
assignments [17,18]. Another strategy also usdta@nsupervised context is to combine the results
obtained by an ensemble of different classificatimethods [19,20]. In this context, several fusion
rules were proposed [19-21] to combine the diffectassifiers/classifier outcomes. More recently,
a fusion strategy for non-optimized classifiers weagposed, i.e. by considering a window of tuning
parameters values for each classifier in the fupragess [22].

Our new approach shares both the ideas of combiautgomes from different methods and
considering windows of parameters values, and ptiep to the unsupervised framework with the
aim of performing exploratory analysis. The apploeaonsists of two steps, each one based on the
fusion of adjacency matrices (AMs). In the firsgstdifferent distance thresholds and metrics are
used to compute several AMs, which are then fus@tgua sum rule, to obtain just a single matrix
as an output. Once having performed this first stepdifferent blocks of data (e.g. acquired by
different analytical platforms) the resulting outpmatrices are then combined into the Fused
Adjacency Matrix (AM-sin Figure 1, step 2). This second step accomighe fusion of data sets
obtained by several analytical techniques [23]. Tgreposed approach is intended as an
unsupervised exploratory tool to better highlighbuping structure, but it can also be seen as a
method for mid-level data fusion of clustering misde

The Fused Adjacency Matrix approach is presentathuss a benchmark, a real case dataset of
analysis of beer samples. This dataset consistthreke data blocks obtained from different
spectroscopic techniques: Visible (Vis), Near IfRad (NIR) and Nuclear Magnetic Resonance
(NMR), the latter as interval-resolved data. Thaadset represents a challenging benchmark to
show the approach’s potential, due to its poteni@iness in analytical information acquired,
associated with its weak grouping structure andtéida priori knowledge (rather general such as

beer style, alcohol content and colour). The baerpes were collected from supermarket, and the
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general purpose was that of evidencing both pechéars and groups of similar samples, in other
words mining all the possible similarities/pecutias, just based on the chemical fingerprint
acquired. Beer has been the object of severalesudiostly focused on a specific beer type aiming
either at gathering the composition [24-27] or oaliihg the brewing process [28,29]. To achieve
these aims very different analytical techniquesehla@en applied: NMR [24,25,27,30-32], LC-MS
[30,33,34], GC-MS [35,36], vibrational (NIR and IRpR4,26,28,37] and UV-Visible [38]
spectroscopies. The benchmark beer dataset coo$idtsee data blocks obtained from different
spectroscopic techniques: Visible (Vis), Near IffiRad (NIR) and Nuclear Magnetic Resonance
(NMR), the latter as interval-resolved data.

The paper is organized as follows: Section 2 oeslihow the data were obtained and what kind of
data analysis tools were employed; a descriptioth@fFused Adjacency Matrix approach is given
in Section 2.2.5 and depicted in Figure 1; SecHaeports the main results of the single datasets
(Vis, NIR, NMR), the mid-level data fusion [39,48hd the Fused Adjacency Matrix approaches;
more detailed comparisons and a summary are report8ection 3.6, while comparisons among
the different fusion steps are reported in SecBahby means of Procrustes Analysis; finally, an
example of how to link back the Fused Adjacencyriatesults to the original data is given in

Section 3.8 using NMR as an example.

2. Materials and methods
Detailed information about each beer sample, sgchegr styles, names, brands and production
sites are given in Table S1, in the Supplementaayelfals. The number of samples by yeast family

and beer style are reported in Table S2.

2.1. Experimental

2.1.1. Sampling and sample preparation
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One hundred beer products were purchased from &ioets. All were rather pale in colour and
clear in the sense that there were no clearly ieighrticles suspended in the liquid. They diffgr b
brand, location of production, percentage of al¢diyovolume (ABV), colour and beer style. To
make the interpretation of plots more straightfadyat was decided to gather some beer styles
under the same “miscellaneous” label. In Figureg, 2egend entries “Ales misc.” and “Lagers
misc.” represent the following styles (in parent®ess reported the number of samples for each
sub-style):

* miscellaneous Ales: ale (1), amber (1), Belgian §town (1), English (1), red (1);

* miscellaneous Lagers: amber (2), amber/strongddgch (4).

A collection of 2 mL eppendorfs was directly preggzhrfrom the original commercial containers
(cans or glass bottles). Three eppendorfs for éaen sample were prepared and kept frozen at —
20°C. The initial steps of thawing and degassing] [&ere common across all the different
spectroscopic techniques, and were performed &snv&l 1) 10 minutes thawing in water bath at
room temperature; 2) 20 minutes of ultrasonic batkvater at room temperature. Since all the
specimens were clear (i.e. no suspended particliésation was not required. The degassing
procedure is highly recommended by literature s®idR4,25,27] and it is aimed at reducing
measurement interferences due to bubble formatitin dn the NIR sample vessel and within the

NMR tubes.

2.1.2. Vis-NIR data acquisition and preprocesing

Visible (Vis) and Near-Infrared (NIR) spectra wereguired together using a NIRS FOSS DS2500
spectrometer, in the range 400-2500 nm (0.5 nmut®a). A cup with a round quartz window
was equipped with a 0.2 mm-gap golden reflectmperate in transflectance mode. Each spectrum
was obtained by taking the average over 16 scagsirad at different positions of the cup’s
window. No additional steps to the preparation pdare described in Section 2.1.1 were necessary

prior to recording the Vis-NIR spectra. The specgiseere prepared in batches of 25 samples and

6



145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

placed right after processing inside a thermalBulated styrofoam box, equipped with ice chips
and a lid. This setup was made to keep the spesinrerstable conditions while running the
experiments.

For each sample three replicates were acquiredhleudrder of acquisition was randomized both
with respect to samples and replicates. A contanie for each batch was also prepared under the
same conditions as the other specimens. A packxafasined beers was purchased from a local
store and kept in a fridge at 4°C. Right beforepprang a batch, the eppendorfs were filled with
fresh beer. This allowed checking for time drifisang different batches, since they were analysed
at different time points.

Similarity among replicates was assessed by penfigrra Principal Component Analysis on the
data centered with respect to replicates, i.e.raatihg from each sample the average of its
replicates: the first principal component explail®8i33% of the total variance, and the anomalous
spectra were identified as the ones far exceedirgstores confidence limits. Six outliers were
identified and by looking at the raw spectra it i@snd that all of them were affected by scattering
effects. After removing these outliers, each sanfyd at least two replicates. A new dataset
consisting of 100 spectra was then obtained bytpttie replicates’ average.

The Standard Normal Variate (SNV) correction wgsasately performed on the Vis and the NIR

datasets [41,42]. Mean centering was finally ajgptigor to data analysis.

2.1.3.'H-NMR data acquisition and preprocessing

All the 'H-NMR profiles were acquired on a Bruker Avance@0l0 spectrometer (Bruker Biospin
Gmbh, Rheinstetten, Germany) operating at Larmeqguency of 600.13 MHz for protons,
equipped with a double tuned cryoprobe (TCl) sebfonm sample tubes and a cooled autosampler
(SampleJet, at 5°C). Spectra were acquired frorthalbeer specimens with TOPSPIN 2.1 (Bruker
Biospin Gmbh, Rheinstetten, Germany), using the BN®YEPPR1D sequence [27,32].

Presaturation of the water signal (4.77 ppm, [222830-32,43-45]) was employed, while the
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ethanol signals were not suppressed [27,31,32h&lexperiments were performed at 298 K with a
fixed receiver gain. Each Free Induction Decay (jPA@s collected using a total of 64 scans plus 4
dummy scans. Prior to Fourier transformation thesRivere zero-filled to 64k points and a 0.3 Hz
Lorentzian line broadening was applied. The spagé®e in some cases automatically and in some
other manually baseline- and phase-corrected ubagrOPSPIN processing tools, depending on
the results of the automatic correction assessed trgined NMR user. For all spectra, the ppm
scale was referenced to the TSP peak at 0.00 ppensgectral window was 20.5 ppm.

After thawing and degassing, the specimens were &ep°C. Preparation of the NMR tubes was
executed in batches of twelve samples, which weleated from the fridge and placed within a
thermally insulated styrofoam box equipped withraugd of ice chips and closed with a lid. The
newly prepared tubes were placed into the autosampktk, which was also stored within the
thermal box.

All  the specimens were prepared to contain 10%0,D 0,02% of sodium-3-
(trimethylsilyl)propionated, (TSPd;) as a chemical shift reference [24,25,27,30-3243and
20% phosphate buffer (pH = 3.55). The required ma&dor the NMR tubes was 600 pL, and it was
obtained by mixing: 420 pL of beer specimen, 60gilD,0O and 120 uL of phosphate buffer in
H,O. Spectra were acquired in random order with resjpesamples and replicates.

Duarte et al. [43] studied the composition of aid &ager beers, and reported pH values within the
3.7-4.4 interval. The addition of a phosphate buffeH = 3.55) was aimed to obtain a set of
specimens with more homogeneous pH values, sdhbaignal’s horizontal shifts across spectra,
due to the different protonation forms of compoursdgh as organic acids [31,32], could be
reduced.

The NMR spectra were imported into Matlab and tigeals aligned usingcoshift [46,47]. Sixty-
four spectral features were resolved by means dfivduate Curve Resolution (MCR, [48]). MCR
was applied to resolve the NMR spectra, by buildl@R models on spectral intervals carefully

selected one at a time rather than trying to maleeaverall model [49].
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NMR data carry different information in differerpectral regions. As a consequence, NMR spectra
are usually roughly split into three regions [43;4Be aliphatic/organic acids region (0-3 ppmg th
carbohydrates region (3-5 ppm) and the aromatiome@—9 ppm). These regions mainly differ
because of involved metabolites/molecules, baseloise, and signal’s average intensity [49]. By
using an interval-based approach it is possibleffeectively handle those differences and to obtain
meaningful chemical quantifications from each regimterpretability and model performances are
also generally improved.

One MCR model was built for each manually definetgrival, using non-negativity constraint on
both profiles and concentrations. For each mode& tomponents representing chemical
information were retained, whereas components @sgr baseline variations or noise were
excluded. Sixty-four resolved components were ewdhyt selected, and their relative
concentrations were then merged to create a neasela(NMR features). Twenty-one of these
features were tentatively assigned based on literadssignments, while the remaining features
were labelled as “unassigned”. All exploratory gsabk were performed on the NMR features

dataset after autoscaling the 64 features.

2.2. Data Analysis

This section is organized as follows: first, we\pde a brief recall of the different unsupervised
data reduction technigues used for exploratoryyamablnd compression (feature extraction), then
the clustering techniques employed in both exptoyaand the proposed new approach, and finally
the adopted data fusion strategies. The novel peb@pproach is described at the end of the
section.

The raw Vis/NIR data and the NMR features datati@ec2.2.1) will be made available for

download ahttp://www.models.life.ku.dk/datasets

2.2.1. Data reduction
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Multivariate Curve resolution (MCR, [48]) was amali to reduce the NMR spectra by features
extraction, as explained in Section 2.1.3. MCR waia® tested on the Vis and NIR datasets. Both
the whole and interval-based approaches led toeanalesults, probably because of the strong
overlap and broadness of the pure signals; this Imrager meaningful curve resolution outcome.
For these reasons, no compression other than pain€Gomponent Analysis (PCA [3]) was
performed on the Vis and NIR datasets.

PCA was also used for exploratory purposes: infeg2 and 3 it was applied to the preprocessed
Visible and NIR spectral datasets, in Figure 5Hhe autoscaled mid-level fused dataset and in

Figure 6 to the Fused Adjacency Matr&kMr,,;), preprocessed as described in Section 2.2.5.

2.2.2. Kohonen’s Self-Organizing Maps (SOM)

In order to account for more complex structure ample space and possible non-linearities, the
Kohonen’s Self-Organizing Maps (SOM [10,11]) weneptoyed. SOM is a type of artificial neural
network that is particularly suitable for modellingon-linear boundaries between samples
belonging to different groups. Its aim is to obtaifow-dimensional representation of the high-
dimensional input space. The high-dimensional spacmapped using a set of representative
coordinates, which are distributed unevenly over space, based on data structure and sample
density. These coordinates are called nodes (oronsu and are organized on a “top-map”,
typically a 2D grid whose geometry may vary. Duritige learning phase, the SOM network
iteratively rearranges the samples over the top;rasgigning them to the most similar node [10].
At the same time the nodes get updated, basedemsathples that were assigned to them. Since this
is an unsupervised method, there is not a targabhgement of samples, therefore the network must
adapt itself (hence the name “self-organizing” maascording to the data structure. The top-map
can be used as an exploratory tool for the ideatiibn of clusters [10], since it allows to assess

similarity between samples in a simple and diregy Moy comparing their position on the top-map.

10
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SOM mapping preserves the topology, and this mehat distances and proximity relations
between samples are preserved [10]. As a resthigfall the nodes that are at the same topolbgica
distance from a given node define a “neighbourho@dtepresentation of nearest, second- and
third-nearest neighbourhoods is given on the top-méigure 1.

In our work, a simple two-dimensional, 10-by-10 aepd grid of nodes was used [11]. The network
was trained for 10000 epochs, with rectangular h@grhoods and a gaussian function for

modulating the distance based-learning.

2.2.3. Ordering Points to Identify the Clustering Sucture (OPTICS)

OPTICS [50-52] is a density-based clustering methoded at revealing the data clustering
structure. This method consists of an iterativecedurre that only needs an initial input parameter,
namelyk, which is the minimal number of objects forminglaster. Daszykowski and Walczak

[52] suggested a rule of thumb for selecting

(1) k= integer (%)
wheremis the number of samples.

OPTICS is based on the concept of Reachabilityadist (RD). RD is a similarity measure [52],
which is basically an Euclidean distance that dbssrhow distant/similar is an object from the one
processed at the preceding step. The graphicalbafpOPTICS is called Reachability Plot (RP),
and it is obtained by plotting the RDs as verticats arranged along the x-axis according to the
processing sequence.

At each iteration, the OPTICS algorithm selects obect and compares it with all the objects that
have not been processed yet. This is done by cangpall the pairwise Euclidean distances. Then,
the next object to be processed is selected antank tearest neighbours: the distance at which
this next object is found becomes its RD, whickted unchanged until the end of the procedure.

The final output is therefore a set of RD valueBicl can be plotted as bars in the RP. A cluster is

formed by objects that happen to be very closeath ®ther, so it can be expected that these objects

11
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would have, on average, a similar number of neighbat similar distances, i.e. they would have
similar neighbourhoods. These short distances ameighbours result in very similar RD values.
When a cluster has been processed, then the ngext eould likely belong to another cluster: the
next RD value in the processing sequence is therefoing to be larger than the values preceding
it, which are related to previous cluster. Thismipi’ from one cluster to another is graphically
recognizable in the RP because it corresponds very high bar. Clusters therefore appear as
hollows created by groups of samples sharing sitpilaw RDs.

It is important to consider that the RP does nqlieitly cluster the objects [52], but it rathefals

deducing the number of clusters in the data.

2.2.4. Mid-level data fusion

Data fusion methods are strategies for combiniffigréint sources of complementary information,

e.g. data blocks obtained from the analysis of ghme set of samples by means of different
analytical techniques. Data fusion strategies arerplly grouped into three levels: low-, mid- and

high-level methods [23,40,53]. Mid-level data fusics accomplished by combining relevant

features extracted from each data block.

In the present study, a mid-level data fusion ddatass obtained by creating a matrix augmented in
the variables’ direction. Seventy-seven featureseweerged: 7 PCA scores from the Vis dataset
and 6 PCA scores from the NIR dataset were mergtdtihhe 64 NMR features. To represent the

three different blocks evenly, autoscaling followsdblock-scaling was performed.

2.2.5. Fused Adjacency Matrix approach

The Fused Adjacency Matrix approach is a two-steyrgdure: in the first step, information is
extracted by processing single data blocks (inptesent work Vis, NIR and NMR), and in the
second step the extracted pieces of informatiorfuesed together. These two steps are marked in

the lower part of Figure 1.

12



300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

The approach is based on the concept of combinffegreht weak sources of information [15-18]
as it is done, for instance, in the classificatomtext by the Random Forest algorithm (RF, [15]).
In RF the results of several weak classifiers ageged by counting how many times a sample was
assigned to one of the defined categories; thersdngple is assigned to the category to which it
was more often assigned.

In our unsupervised case, we convert the distanfiennation into several adjacency matrices,
which represent the weak sources of informationjagehcy matrices (AMs) are squared binary
symmetric matricesng x m) in which a one is present when the adjacencyitonds fulfilled by

the pair of samples under exam, and a zero is pregeen this condition is not fulfilled. In other
words, these matrices carry the information aboluether two samples are close enough to each
other (they are “adjacent”) as compared to, fortainse, a distance threshold (the adjacency
condition). Merging these AMs using a sum rule [M4] result in a new squared symmetric matrix
in which, those pairs of samples that were consiistéound adjacent will be characterized by high
values, while those pairs of samples which weresistently found far apart will have low values
or, even better, values close to zero. This iotrezall idea of the proposed approach.

In our approach, for a given data bloeki Figure 1, on the left side), fourteen differés are
obtained. Ten are derived by using Euclidean antddiémobis distances (Equation 1), and four by
using SOM as a “clustering” method (Equation 2)eDRa the number of implemented thresholds,
the contribution of each distance measure to fémeAM x was comparable; however, the use of a
weighted sum can be advised in the more general cas

(2) X - Dgye/man = thr =[0.05,0.1,0.2,0.3,0.4] > AMgyc/Mah = Dihr=1 AMiny

(3) X — SOM - topmap — g = [0,1,2,3] = AMgom = X5_o AMg neigh

The Euclidean and Mahalanobis distance matricegatie normalized between zero and one, and
the same window [22] of five threshold values (0-@b1 - 0.2 - 0.3 - 0.4) is applied to both the
matrices. SOM does not provide a distance matux,ifstead a grid of nodes (the top-map), on
which the samples are arranged. In this case,djaeency condition to be checked is whether the
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two considered samples belong to the samepological neighbourhood or to a closer one. We
defined four topological rectangular [54] neighbdwmwods ¢ = 0, 1, 2, 3), including the “zetfo
level”, which corresponds to a single node. Sindfer@nt SOM runs generally produce slightly
different outputs, the average over ten runs wéentao make the resulting adjacency matrix
AM som more robust.

(4)  AMy = AMg,. + AMya, + AMgoy (X = Vis, NIR, NMR)

(5)  AMg,s = XxAMy = AMy;s + AMyg + AMyyg

Figure 1 provides a graphical representation ofvthele Fused Adjacency Matrix approach. For a
given data block, its corresponding output is the matAM x (Equation 3). When more than one
X data blocks are available (like in the benchmadeqresented in this work, where X = Vis, NIR,
NMR), the resultingAM x matrices can be combined using, again, a sum(f28, equation 4).
The result is the Fused Adjacency MatAk s, depicted in black in Figure 1. In this work, the
values inAM gys vary between zero and 42, as a result of summitogah of 42 AMs which have
ones on their diagonal. Prior to analysis, the Busdjacency MatrixAM g,s was double centered
[55] so that:

(6)  AMpyscent = AMpys — AMpygm — AMpysn + AMpysmn

which corresponds to remove the column maMi,s, and the row meaAMpg,,,,, (Which are
exactly the same becauaM g,s is symmetric), and finally adding back the overaanAMgys /mn,

similarly to the way distance matrices are usugiBprocessed [56].

2.3. Software

The whole data analysis process was carried ouMAMLAB 2016a (Mathworks, MA, USA).
PCA analysis was performed by using the PLS Tool8dx1 (Eigenvector Research Inc. WA,
USA). NMR spectral alignment was operated usingicoshift ([46,47],

http://www.models.life.ku.dk/icoshift, last acces¥l/01/2019). NMR interval-resolution was

operated by means of the MCR-ALS GUI by Joaquimmiztu Anna de Juan and Roma Tauler.
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([57], https://mcrals.wordpress.com/, last acceE9B32019). The OPTICS algorithm was written

by Michal Daszykowski and it can be found_at htgiiémometria.us.edu.pl/download/OPTICS.M

(last access 31/01/2019). Kohonen’s Self-Organiaitagps were computed by using a homemade
routine by Federico Marini (Universita La SapienRgma). The Fused Adjacency Matrix was
computed by using in-house written MATLAB routinegjich will be made available for download

at http://www.models.life.ku.dk/algorithms.

3. Results and discussion

The results are organized in the following sectidirst, results referring to each single spectral
dataset (Sections from 3.1 to 3.3) are presentesh) tesults from mid-level data fusion are
discussed in Section 3.4 and, eventually resutim fthe Fused Adjacency Matrix approach are
reported in Section 3.5; more detailed comparisam®ng the different results are reported in
Section 3.6 and summarized in Table 1. The diffefesion steps were also inspected by means of
Procrustes Analysis, and the results are reportegection 3.7 Finally, an example of how to link
the Fused Adjacency Matrix to the original NMR wadles is given in Section 3.8.

It is important to clarify that the results regamglithe proposed novel approach are only those
reported in Section 3.5 The results for the VisitNéR and NMR data were obtained working on
the preprocessed spectral data (resolved feainrd® case of NMR), so no AMs were involved in

the single-data block analyses.

3.1. Visible dataset

The visible spectra, after preprocessing, wereyaedl by PCA and OPTICS. Figure 2 reports the
results, namely the OPTICS reachability plot (RP)Figure 2a, and the PC1-PC2 score plot in
Figures 2b and 2c, colored according to beer gbjland colour intensity (c).

Two main groups were identified by OPTICS. Thetfase, the Ales group, is mainly composed by

ale-style samples and it is less homogeneous caugarthe second, the Lagers group, which is
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largely composed by lager-style samples. The tvoupgs also have different density: the Lagers
group results denser than the Ales group, andctimsbe seen in both the RP (Fig.2a) and the score
plot (Fig.2b). The colour scale employed in Fig@edescribes the beer colour intensity, that is
defined as the absorption of the sample at 430taken as reference wavelength [58]. A colour
intensity gradient is recognizable along PC1 (FKijy.Zhe sample distribution along PC2 is, on the
contrary, much less clear. Some of the mid-colowathples are spread along PC2, and the four
samples with the strongest absorption have negatiwees on this component. These four samples
belong to very different beer styles but look ratgeuped in the PC1-PC2 score plot. This is not
reflected by the RP, where the samples show inicrglgishigher distances. Actually, by inspecting
the score plots of higher PCs (not shown) thesegnouped samples are always found at extreme
positions with respect to the rest of the sampisce OPTICS operates on the full spectra, the
increasing RD trend is due to the piece of inforamathat is not included in the PC1-PC2 score

plot.

3.2. NIR dataset

The information that could be extracted from th&Nlataset is rather limited, and this can be seen
by inspecting the RP (Fig.3a) and the PC1 scor¢ (#m.3b), both obtained from the NIR
preprocessed spectra.

A clear alcohol content (% alcohol by volume, ABV%iadient is recognizable along PC1, as
shown in Figure 3b. Ethanol content is thereforéiciehtly represented by PC1, whose
corresponding loadings (not shown) are characirize two intense ethanol bands within the
region 2200—-2400 nm [37].

Two main clusters of samples were identified bypewing the RP (Fig.3a), a small one which
contains a mix of beer types (“mixed group”) and tiagers group. The Light beer samples appear
rather grouped, as it is indicated by the shadgt blue rectangular area in Figures 3a and 3b. The

samples located at the right end of the plot candmsidered as non-grouped. This was also found
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in PCA, where the two identified clusters have watlvariability along PC1 with respect to the
non-grouped samples (Fig.3b). The non-groupedssetuch more scattered, as it has both higher

bars in the RP (Fig.3a) and a large variabilitygeaalong PC1 (Fig.3b).

3.3. NMR dataset

A data representation from the field of Sensomi&8,40], was used for inspecting the NMR
features and the results are shown in Figure 4.hEa¢map [60] in the central part of the figure
represents the data values. The columns of theniapatepresent the samples while the rows
represent the variables (concentrations of MCRMvesiofeatures in the different samples). Rows
and columns were reordered according to the segsemiatained by running OPTICS first in the
samples’ direction (RP on top) and then also invilu@ables’ direction (RP on the left side). This
allows highlighting both groups of samples and afales, making it easier to relate the most
influent groups of variables to each group of s&sp60].

To obtain clearer groupings in the variables’ dimat correlation among the NMR features was
used, instead of distance, to calculate the reddiyabistance for the RP plot. Three main groups o
variables can be identified (Figure 4 variables’, BR the left side): the first group mainly contin
amino acids, together with uridine and gallate; skeeond group is composed of yet unassigned
variables, and the third group is partially relatednaltose and to two unassigned variables.

The samples’ RP shows a cluster that can be idehisfs the Lagers group. The rest of the plot is
rather uninformative from a group-spotting point wéw, since its largest part consists of a
sequence of increasing RDs (non-grouped set).dsiiagly, the Light beer samples constitute a
recognizable sub-group which, as expected, hasrggnéw values for all the variables. Also, a
small group can be spotted at the centre of th@lBiRgroup D in Figure 4), and it is characterized
by medium-low values in amino acids and medium eslfor the second group of variables. The
non-grouped set contains very different beer stylég samples belonging to this group generally

have higher amino acids content, but also maltibsel (Qroup of variables).
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3.4. Mid-level data fusion

The PCA and OPTICS results obtained from the preg®sed mid-level fused dataset are shown in
Figure 5. The OPTICS results resemble those oNYR features dataset: a slightly defined Lagers
group at the beginning of the RP, followed by a &dislowly increasing RDs forming a non-
grouped set (Fig.5a). However, the sample distobubbtained by PCA (score plot in Fig.5b) is
mainly determined by few variables, according te tbadings plot (Fig.5c). Features related to
ABV (“Scores PC1-NIR”) and colour (“Scores PC1-Vis'Scores PC2-Vis") are the most
influential.

All the Light beer samples are located at nega#@d and positive PC2 scores, while two of the
strongest samples lie far away in the oppositectioe. This defines an ABV direction (light blue
arrow in Figure 5b). Even though the Light beer gla® seem to be rather grouped in PCA, they
are not found grouped in the RP. Again, an explandbr this discrepancy can be found in the
different amount of information described by the @ whole preprocessed data) and the first two
PCs shown in Figure 5b, which only account for 3%6of the total variance of the mid-level fused
dataset. Almost perpendicularly to the ABV direntithe variable “Scores PC1-Vis” (Fig.5c) tends
to separate the most coloured samples (Fig.5bjigigad in orange), and helps to separate along

PC1 the Lagers from the Ales, which usually haveanatense colours.

3.5. Fused Adjacency Matrix

The results obtained by OPTICS and PCA on the Fusdidcency Matrix preprocessed as
explained in Section 2.2.5 are discussed here lamdrsin Figure 6.

Two clusters of samples and a non-grouped set eaddntified in the RP (Fig.6a). These three
groups have a correspondence in the PC3-PC1 stare@fpthe same matrix (Fig.6b) The non-
grouped set is more scattered in PCA (blue patéhgare 6b), and it contains the strongest one and

three of the five Light beer samples. The Ales baders groups are much more defined compared
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to the results found with the single techniques #ed mid-level data fusion approach. It is also
interesting to notice the sample distribution witlthe Lagers group, where the “simple” lager
samples (in red in Figure 6b) are very groupedhanright side, which is in an opposite position
compared to the Ales group.

PC1 is related to the colour, and when combined WAC4 the samples adopt an arch-like
distribution (Fig.6¢c). The PC1-PC4 score plot notyoshows the colour trend, but also suggests
new groups of samples, which are highlighted irygneFigure 6¢c. To gather which characteristic
features are shared within these sub-groups thgup average NIR spectra (Fig.S1a) and NMR
resolved features (Fig.S1b) were compared. Mosh@fgroups have some distinctive regions, e.g.
sub-groups 6 and 7 have higher content of amindsambntent, while the three close IPAs (sub-
group 4) have high values in NMR for maltose arskfof features not yet completely identified,
among which ethanal, isopentanol and higher alsoWvele tentatively assigned.

Based on our current knowledge, it is not posdibhelly explain these groupings, however work is
in progress analysing a database of consumer prefes obtained from the website ratebeer‘com
to assess if some of the grouping may be relateti¢h information. Preliminary results show that
PC1 of the Fused Adjacency Matrix seems to haveoag inverse relationship {R= —0.973) with
the overall score computed by the website fronutders’ evaluations (Fig.S1c).

https://www.ratebeer.com/ (last access 31/01/2019)

3.6. Beer features comparison summary
In this section, more detailed comparisons amoegdisults obtained by the different data blocks
and data fusion approaches are reported. Tablefaized as a summary of these comparisons.

Some overall samples’ sets and beer features waaieed along the single data blocks.

3.6.1. Lagers group
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The Lagers group was identifiable in all represiong of the data, and it appears to be rather
stable. The Vis andM g5 datasets showed the best results in terms of ssngpbuping, which is
probably reflected by their similarity, as highligl by Procrustes Analysis (Section 3.7).

An interesting group of lager-style samples is HHesamples set, which includes beer products
from the same brand, Hite. This set of sampleggaruzed in couples of replicates: “Pale Lager”
(H1.1-2, HI.3-4), “Dry Finish” (HI.6-7), “Golden” 1.8-9) and “Fresh” (HI.10-11-12-13), where
the second replicate underwent thermal treatmesintlate ageing. Only sample HI.5 does not
have a replicate and it is also a different beedpct (“MAX”). The HI samples were generally
found in the Lagers group, with some exceptionsl ldhd HI.5 in NIR (Fig.3a); HI.8-9 and HI.5 in
NMR (Fig.4). No fixed order related to thermal treant was found, neither with OPTICS nor with
PCA, in any dataset. Moreover, no consistent oafethe replicates was found neither in the
spectral datasets, nor in the mid-level fused éat&ven though in the NMR case some of the HI
samples were found gathered in two sub-groups:pgB®HI.10-11 and HI.12-13) and group C
(HI.4-3, HI.6-7) in Figure 4. Group B has highentent of some amino acids, acetate, uridine and
an unassigned variable between the two last onesh@contrary, this piece of information clearly
emerged by analysis &AM g, dataset. In fact, the HI samples were found vee}l grouped
together in the RP (HI in Figure 6a), forming eheatordered sequence of couples of HI replicates;
couple HI.3-4 was not found among the other HI das)pbut some positions further in the
sequence of the RP (Fig.6a).

Another interesting set of samples is represenyeth® EU beers. They belong to the same brand
and three of them are the same product (EU.1-Bfjder Premium Pils”), while EU.4 (“Servus”)

is different. However, sample EU.2, differentlyftdhe other three EU samples, did not undergo
thermal treatment. These samples were not foungbgiabin the Vis and NIR cases, while in NMR,
mid-level data fusion andM g sthe EU group was recovered in the RPs, albeitfferdnt extents.

In the NMR case, the samples are ordered (group Adgure 4) as EU.1, EU.3 (“Bruger” treated),

then EU.2 (“Bruger” non-treated) and finally EU*&érvus” treated). In the case of mid-level data

20



507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

fusion, a similar situation was found, but EU.4 viasnd further in the RP. Interestingly, in the
AM g Ccase, the three thermal treated samples (EU.13 ll EU.4) were found grouped together
(group A in Figure 6a), while EU.2 one was foundHer in the OPTICS sequence, suggesting that,
only by this approach, a clearer difference basethe treatment was recovered.

Three “unclassified” samples (LE.1, OE.4, KR.1) ev@onsistently found in the Lagers group.
These products are described as “summer beersg&ftine their presence in the Lagers groups is
not unforeseen: this product type is intended todieeshing and easy-to-drink, and it usually is
lighter in aromas and alcohol content. For thessars it can be expected to find these summer

beers more similar to the lagers than the ales.

3.6.2. Light samples set

The Light samples set includes five beers of déffierstyles (KR.2, Classic light / LE.2, IPA light /
FB.2, Lager light / TO.4, Lager light / NO.2, Ligle). These beers are labelled as “light” and
they are produced with the aim of obtaining a loa@mntent of ethanol and flavours.

The NIR and the NMR datasets gave the best resutesms of grouping the Light samples set. In
the NIR case the Light samples were found groupel im the RP and the PCA scores (light blue
patches in Figure 3). They lie at extreme positraties along PC1, which is a component that
describes ethanol conteAt.confirmation of the generally lower content iaviburs was found from
the NMR results: all the Light samples share a lasinpattern of very low values along all the
variables of the dataset (Light sub-group in Figlixe

The Light samples set was found rather groupedhendata fusion cases (Figures 5b and 6b), but
only in PCA. In the Vis case, the Light samplesragher grouped in RP or PCA but belong to the
Lagers group: lighter beers are usually less psm#¥ermented, so they tend to develop less

intense colour.

3.6.3. ABV trend
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No ABV trend was evident in the Vis case. Thisasumally present in the NIR case (Fig.3b), since
PC1 describes the ethanol content. The trend éspassent in the mid-level data fusion case, since
variable PC1 from NIR is highly influential (Fig.pdNo clear ABV trend was found in the RP for
the NMR case, even if it was found in PCA, whichreported in the Supplementary Materials as
Figure S2a.

The AMgys case is rather different. The ABV trend is presanPC1-PC3 (score plot reported in
Figure S3, in the Supplementary Materials), bu transformed way. The strongest and the lightest
beers all lie in the top part of the plot and tladiybelong to the non-grouped set (as in Figure 6b)
These samples represent the extremes in ABV, sopbsition is probably due to the fact that the

approach is just able to detect their dissimilafityn the bulk of “ABV-average” samples.

3.6.4. Lagers Strong set

The Lagers Strong set includes six beers (ordeyeadreasing ABV, MA.3, SI.9, MA.5, MA.6,
MA.2, FB.3) and it is interesting to track theirgitton because of their style: lagers strong agrde
brewed with lager yeasts, but more alcohol is oletiduring the brewing process.

The Lagers Strong set was generally found split inio groups: four “low-ABV” and two “high-
ABV” samples. The low-ABV samples (MA.3, SI.9, MA.BIA.6) were found in the Lagers group
in the cases of Vis, mid-level data fusion &M s, While the NIR and NMR cases provided two
different situations. In the NIR case, the thregdst ABV samples were found in the mixed group,
closer to the Lagers than the three highest ABVpam(Fig.3a). On the contrary, in the NMR
case, the Lager Strong samples are all in the kagesup and do not follow any ABV order
(Fig.4). Both the data fusion approaches, in RPARTICS (Fig.5a and Fig.6a) is clearly
highlighted that the four low-ABV samples are msimilar to the lagers (they belong to the Lagers
group) but are also located closer to each oth#riwthe RP sequence. However, the separation
between high- and low-ABV samples is much bettgmragiable in the PCA of thaM g, (Fig.6b)

than in the mid-level data fusion score plot (Hg.3n AM g, moving along PC1 from the Lagers
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group towards the Ales group, the four low-ABV sdespare found, while the two high-ABV
samples are much more distant, and closer to thegest samples in the dataset. On the contrary,

the same samples in the mid-level data fusion guotgFig.5b) are located in the same area.

3.6.5. Colour trend

The colour trend naturally originates from the Wataset (Fig.2c). No trace of it was found neither
in the NIR nor the NMR cases. Both the data fusiwethods were able to recover this piece of
information, even though th&M g5 (Fig.6¢) provides a clearer trend than the miclelata fusion

(Fig.5h).

3.6.6. Summary Remarks

The trends and groupings described above gene@ligspond to the main known traits of the beer
styles under examination. While the single speaedh blocks can primarily provide one aspect
each, both the data fusion approaches were allglext and keep most pieces of information. The
Fused Adjacency Matrix, however, could capturerfisieuctures in the main groups, for instance
the very well-ordered HITE group, with the replesatof each product found in a sequence by
OPTICS, or the EU set, where the treated samples fwend grouped together and the non-treated
one was found much further away. Trends like colmtensity and lager/ales distinction were
recovered more clearly by the Fused Adjacency Matsihile others like ABV content and the
Light samples set were slightly better retrievedhsy mid-level data fusion approach.

It is also very promising that the Fused Adjacektatrix approach can highlight small sub-groups
(Fig.6¢c) which may be worth further investigatioh tbeir chemical/sensory characteristics. A
deeper characterization of these sub-groups maying&tance, provide new inspiration in beer
production, helping to define intersections betwestablished and more general styles.

Table 1 to beinserted about here
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3.7.Comparisons by means of Procrustes Analysis

In Sections from 3.1 to 3.6 we have graphicallypewed and compared the information gathered
by the different data blocks as depicted in thengypal components space, with the aim of
highlighting similarities and differences amongrtherhis way of visually exploring the data easily
allows spotting trends and peculiarities, but sciibjgy and limited availability of metadata (i.e.
additional information such as the beer style erAlBV content) can sometimes be a drawback.

A more objective evaluation of how similar/diffeteare the results obtained from the different data
blocks by comparing their PCA spaces can be oldaine means of Procrustes Analysis (PA,
[61,62]). Like in our beer benchmark case, the saetef objects can be described by two distinct
sets of PC scores, obtained for instance from tifferdnt analytical sources. The aim of PA is to
obtain the closest match between these two PC sgacepplying operations such as scaling,
rotation, reflection and translation. The simikaribf the two spaces is expressed using a
dissimilarity parameted, ranging from zero to one [62].

In this work, the PCA spaces obtained from theedéht blocks (i.e. each single analytical platform,
the mid-level fused data set and tAM s data set, referred to as inter-block comparisor) a
compared by PA analysis. Also, the data obtainenh fthe different steps of the procedure, going
from the raw data to the AMs for each single data\which will be namedM x, with the suffix X
being Vis, NIR and NMR, in turn) have been compabgdPA. The latter case is referred to as
intra-block comparisons. An overview of the resui$s given hereinafter, while the visual
representation is reported in Figure S4, in thepBupentary Materials.

Inter-block comparisons were made, in pairs, uthegPC scores of the Visible spectra (7 PCs), the
NIR spectra (6 PCs), the NMR features (6 PCs),nticklevel fused data (5 PCs) and the Fused
Adjacency Matrix AM gy, 7 PCs). The same number of principal componenthat considered to
build the mid-level fused dataset were used in t8Aeep it constant, and the results are shown in
Figure S4a, where the dissimilarity value betweanhepair of data sets is reporte®M gys is

substantially different (dissimilarity higher th@rb) from the mid-level fused data, which suggests

24



611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

that these two datasets carry different informat@¥ r,s was also found rather different from the
other datasets: this is a desirable situationeswme are dealing with a data fusion approach. A too
strong resemblance with any single source datasatdwhave meant that the fusion process was
giving too much importance to that source, whil®@ loose similarity would have meant that the
information was either too reduced or not captumngthe approach.

The effect of the different fusion steps was alsseased. These intra-block comparisons were made
for each data block individually (using the samenber of PCs as specified above), and the results
are shown in Figure S4b. One interesting poinhésttansition from the distance information to its
correspondenAM x. The Euclidean distandeg,: resulted consistently similar to the Euclidean
AM g, meaning that the “coded” AM version of the dat&kéeping a large part of the original
distance information. The same was observed wighMiahalanobis distance, albeit for the NMR
case the similarity betweeDyan and AM yan was found lower (Fig.S4b). By inspecting the
corresponding score plot it appears that this difiee is due to a limited number of samples which
have extreme values on the second component in ®d@Ay,n and are not IAM van (adjacency
being assigned on interval values is less senditiextreme values). Another interesting relatgn
between the Euclidean and SOM AMs: the matridbbe,c and AM som are very similar, either
because the samples pattern in the beer data caelbéescribed by a linear model or because the
Euclidean distance (which is a non-linear transjasrsufficient to model the non-linearity present
in the data pattern. These two AMs also repredenttwo major contributions to the single-data
block AM x. The Mahalanobis distance was consistently foatker different fromAM x and the
other distance measures. This is probably becagbemPCs bring in rather different information
with respect to the first ones, as in order to dwingularities we have calculated the Mahalanobis
distance on PCA-compressed data and thus it camespto Euclidean distances on the autoscaled
PCs. However, a systematic different behavior ef Mahalanobis distance with respect to other
metrics (including Euclidean) has been previouslgesved in a study considering several data sets

[63].
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637

638  3.8. Link to the original variables

639 One of the major issues when dealing with adjacenayrices is that the link with the original
640 variables is lost. When an adjacency matrix istpdfle “adjacency condition” for each pair of
641 samples is evaluated, therefore the focus is on Hmtant the two samples are: the original
642  variables are only used to compute the distances.

643 A way for linking back the Fused Adjacency Matresults to the original variables is presented in
644  Figure 7 using the NMR features dataset as an eeamp using the same representation used in
645  Figure 4, the samples were reordered using thedBesce obtained from the Fused Adjacency
646  Matrix. Therefore, the heatmaps of the two figuvaly differ in the order of their columns. Such a
647 new column sorting allows a direct comparison betwéhe observed sample clusters and the
648 chemical features linked to specific class of comuis, as detailed in the following section.

649  The Ales group in Figure 7 shows medium-high vainesorrespondence of the amino acids. The
650 non-grouped set also has some samples with conmearalues for the amino acids, but the Ales
651 group has a more uniform composition. The amindsacégion also represents the main difference
652 between the Ales and the Lagers groups. This &caordance with the results obtainedarte

653 et al. [24], who suggested that the aromatic region cdudlcdused to distinguish between ales and
654 lagers.

655  Two sub-groups can be noticed within the Ales grod@nd B in Figure 7). The first sub-group
656  (A) is mixed, and consists of seven ales, fouriageéd one unclassified beer. These samples have
657 medium values for variables from 3 to 11, whichlude compounds such as tryptophan, gallate,
658 phenylalanine, uridine and two signals from pralifibeir amino acid content is on the other hand
659 much lower if compared to the other samples belomntp the Ales group. The second sub-group (B
660 in Figure 7) consists of five ales and two lagéisis sub-group is characterized by high values
661 related to the first 20 variables, which includethé identified amino acids together with gallate

662 and uridine.
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The Lagers group generally has medium-low valugge@ally in the case of the second group of
variables and the amino acids group. Several sabpgrcan be identified within the Lagers group
(C, D, E, Fand G in Figure 7). A couple of samg@eshe beginning of the group (C) have almost
identical patterns, especially for the amino aadstent. These two samples are the same beer
product, but the second one underwent thermalnteatt Some differences can be spotted along
the two patterns, and the second sample alway$igasr values at these points. A second sub-
group (D) consists of four lager samples of thees@énmand, which are among the poorest in amino
acids content. Their patterns look very similarstdo-group E, which contains two beers of the
previous brand, two more lagers and one lager gtr&ub-groups F and G also have similar
patterns, but the samples in F tend to have higakres in amino acids, but lower values for the
variables in the upper part of the map. At the laup between the Lagers group and the non-
grouped set, a sub-group of four samples (H) cafobed. This small group is characterized by
high values in amino acids and medium values femtialtose group.

This visualization approach is very efficient whéealing with data such as extracted features,
while in the case of continuous data (e.g. spectregmatograms) reordering the original variables
would make the visual interpretation very difficulin example with the Vis and NIR cases is given
in Supplementary Material, Figure S5a and S5b sy, without having performed variables
reordering. In the case of Vis (Fig.S5a) differgriensity of the absorption bands between the two
main Ales and Lagers group can be observed, whiléhe NIR case (Fig.S5b) the pattern is not so
clear to interpret and differences in absorptiotensity, for most of the spectral regions, are

highlighted only for the non-grouped set.

4. Conclusions

The Fused Adjacency Matrix approach can recoveemstt information from different datasets

with highly complex structures, highlighting grougsd trends in a way comparable to and in some
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cases superior to the mid-level fusion approacffeinces and similarities among the different
approaches were shown, and the most importantfysdre organized and reported in Table 1.

As it should be expected from a data fusion appgrotie Fused Adjacency Matrix is able to retain
the information from the original datasets, andeteeal other features arising from the combination
of the fused sources. Possible new sample clusters also highlighted, but their interpretation is
not straightforward: this is for sure an aspect tieserves deeper investigation.

Further research about the Fused Adjacency Mappraach should be directed mainly in two
directions. Firstly, the approach should be testedother datasets, ideally of very different
provenience, nature and complexity. Secondly, thgraach itself should also be improved from a
structural point of view. For instance, the isstdidiking back to the original variables may be
addressed, with the aim of enhancing the interpii@iaof the results. Another aspect that may be
investigated is the influence on the whole proadsthe different thresholds and neighbourhoods.
This influence may be assessed by folding the siAdlis (i.e. the matrices at the steps prior to the
summing and averaging operations in Figure 1) three-way array and analysed it by means of
PARAFAC or Tucker modelling.

Finally, the obtained results and new groupings rbay used to investigate beer from the
gastronomic point of view, with particular focus sensory and consumer evaluations. Assessing
the link between the objective world of analytichemistry and the subjective world of consumer

experience may produce great value for both thestng and the beer lovers.
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in the legend; (c) PC1 vs PC2 score plot coloummiaing to beer colour intensity: one intensity
value for each spectrum is calculated by takingaterage of intensity values in the interval 430+5

nm. The background patches in (b) highlight the @STgroups defined in (a).

Figure 3. NIR spectra dataset: (a) Reachability Plot, baescalored by beer style, as detailed in
the legend; and (b) PCA score plot colored by ABWtent. Samples in both in (a) and (b) were

reordered according to OPTICS order.

Figure 4. Heatmap of NMR features with Reachability Plo@riable’s RP on the left sid& € 3),
samples’ RP on tok(= 5). OPTICS in the variables’ direction was perfed on the correlation
matrix, instead of the variables themselves. Incérgtral part of the figure it is shown the heatmap
obtained by reordering both the samples and thmhblas according to the respective OPTICS
sequences. The dataset was normalized betweerazdrone to enhance its visual representation

and interpretability.

Figure 5. Mid-level fused dataset: (a) Reachability Plo), P2 vs PC1 score plot, (c) PC2 vs PC1
loadings plot; colours and symbols explained in ldgend on the plot. The area highlighted in

orange corresponds to the most coloured beer sample

Figure 6. Fused Adjacency Matrix: (a) Reachability Plot; B3 vs PC1 score plot, colours and
symbols explained in the legend on the plot; thekeound patches in (b) highlight the OPTICS
groups defined in (a). (c) PC4 vs PC1 score plaipuwrs and symbols explained in the legend on
the plot; the curved arrow in (c) describes therbmdour intensity trend; the red background

patches in (c) highlight possible new groups.
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921 Figure 7. Heatmap of NMR features with Reachability Plotsriatales’ RP on the left side
922 (OPTICS performed as described in the caption glfe 4), samples’ RP on tog € 5). The
923 samples are reordered according to the OPTICS sequebtained from the Fused Adjacency
924  Matrix (as in Figure 6). The dataset was normalibetiveen zero and one to enhance its visual

925 representation and interpretability.
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Table 1 Comparison summary (* ordered by increasing ABV)

Visible

NIR

NMR (Fig.4)

Mid-level datafusion

Fused Adjacency Matrix
AMFus

L agersgroup Dense cluster in RP. (Fig.2q) Slightly defined in RP. (Fig.3a)  Slightly defined in RP. Slightly defined in RP. (Fig.58) Defined cluster in RP. (Fig.6a)
Grouped in PCA. (negative At positive PC1 scores, close Medium to low variablevalues At negative PC1 scores. HI samples grouped and well-
scores, Fig.2b) to zero. (Fig.3b) in general. (Fig.5b) ordered together in RP.

Some sub-groups; contains the (Fig63)
Light samples set as a sub- Grouped in PCA. (Fig.6b)
group.

Unclassified o LE.1, OE.4, WI.2,SK4,KR.1 OE4,UG3 KR.1,LE1 LE.1, OEA4 LE.1, OE4,KR.1, TY.3 LE.1, OE4, KR.1, WI.2

fresh/summer beersin  (Fig.2d) (Fig.39) KR.1isin the non-grouped set. (Fig.5a) (Fig.6b)

the Lagersgroup -

(most frequent ones:
LE.1, OE4, KR.1)

Light samples set
(KR.2,LE.2, FB.2,

All in the Lagers group.
(Fig.2b)

Quite grouped in RP. (Fig.3a)
All extreme on PCL1. (Fig.3b)

Grouped in RP.
Included in the Lagers group.

Not grouped in RP. (Fig.5a)
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A new approach to enhance information extraction from highly complex datasets is proposed.

The approach is based on the fusion of adjacency matrices obtained from different clustering
strategies.

Information extracted from different data blocks is fused, so the approach can also be a method for
high-level data fusion.

Visible, NIR and NMR data of beer samples are used as a benchmark for testing the approach.

The approach can highlight groups in a better way than the single-block and mid-level data-fusion

approaches.
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